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Recitation 1: Number Theory Background

1 Modular Arithmetic

Modular Arithmetic is a system of arithmetic within a finite set of integers, where numbers “wrap around”
when reaching a certain number. For example,

2=12=22 mod 10

Generally, for n > 0 and integers a and b, we can say that a =b mod n if n divides a — b, also denoted
asn|a—b.

2 Basic Operations

For addition, subtraction and multiplication, modular arithmetic operations are consistent with normal
math. So for a,b,a’,b" where a = a’ mod n, b = b mod n, we have the following:

eat+b=d +¥b modn
ea—b=dad -V modn
e axb=a xb modn

Division is trickier and relies on the existence of multiplicative inverses. Given an integer a, a~! is the
multiplicative inverse of ¢ modulo n if a xa™! =1 mod n.

Note that a only has a multiplicative inverse modulo n if and only if ged(a,n) = 1. You will prove a
special case of this fact in Problem Set 1.

On the other hand because for any non-zero element in modulo p where p is prime, there exists a mul-
tiplicative inverse so division works all the time. Other than the method of computing the multiplicative
inverse, division in modular arithmetic works the same as normal division.

For example, % + % = % over rationals. Considering modulo 7, we get 271 = 4,371 = 5,67! = 6 so
applying this to the fractional equation 1 %4+ 1%*5=9=5%6 mod 7.

3 Modular Exponentiation

Exponentiation works the same way as it does in normal math, i.e. repeated multiplication. The interesting
part about exponentiation is how the value cycles as we go through the exponents.

For example, the powers of 2 and 6 appear as follows when simplified modulo 7:

20 [ 2223 [ 2825 [ 28
2 |14 11 ]2 |4 |1

6T 162[6°[6%]6°]6°
6 |1 6 |1 ]6 |1

In this case, 2 cycles every 3 elements. For any prime p and a # 0 (mod p), a',a?,...,a?~! must cycle

through some subset of the p — 1 possible non-zero residues modulo p. The length of the cycle is also called
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the order, i.e. ord7(2) = 3.

For any prime p, there exists some integer g such that ord,(g) = p — 1. In other words, the cycle loops
through all possible residues in some order. g is often referred to as a primitive root or a generator of p. For
example, 3 is a generator modulo 7 since

333 [3F[3]3°
1 [3 |2 ]6 [4]5

4 Groups

The Diffie-Hellman key exchange protocol can be generalized to work with mathematical objects beyond
integers modulo a prime, such as elliptic curves.! Both elliptic curves and modular multiplication fall under
a common mathematical abstraction called a group, which we will define below.

A group is a set S equipped with a binary operation, commonly notated as addition with +, that satisfies
the following properties:

1. The operation maps elements of the set into the set. Formally, for all s1,s2 € S, s1 + 55 € S.
2. There is an identity element, commonly notated 0. Formally, for all s; € S, s1+0 = s; and 0+s7 = s7.

3. Each element has an inverse. This means that there is another element that takes the result to the
identity. Formally, for all s; € S, there exists so such that s; + so =0 and s3 4+ s1 = 0.

4. The order of operations does not matter (associativity). Formally, for all s1, s2, 53 € S, (s1+82)+83 =

s1 + (82 + 83).

4.1 Examples of groups

A common example of a group is the integers modulo n, for some number n. For example, let’s consider the
integers mod 4 with the operation of addition. There are 4 elements in the set S: {0, 1,2,3}. The operation
of addition maps the elements in the following way:

+10 1 2 3
0j0 1 2 3
111 2 3 0
212 3 01
313 0 1 2

This looks a lot like a multiplication table and is referred to as a Cayley table for a group. Is there
another group with 4 elements?

® 00 01 10 11
0000 01 10 11
01|01 00 11 10
10{10 11 00 01
11|11 10 01 00

This group is formed by the exclusive or operator on 2 bits. We can notice some patterns about groups

'n fact, real-world Internet protocols like TLS (essentially the s in https) and SSH almost exclusively use elliptic curves to
perform the Diffie-Hellman key exchange for performance reasons.
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e The element 0 appears in every row and column, because every element has an inverse.

e No value repeats in any row or column. If it did then we would have x + y; = x + y2, but this means
Y1 =Y.

e Every value appears in every row and column. As there are no repeats and only 4 values, they all must
appear.

What other groups of 4 elements are there? We can consider a group where we rotate a square. The
group operation is to apply the rotations consecutively

| 0 90 180 270
0 | 0 90 180 270
9 | 90 180 270 0
180 | 180 270 0 90
270 270 0 90 180

If this looks like a familiar pattern, you're right. This group is actually the same as Z,4, but all the
elements have different “names.” This is called an isomporphism.

We can also consider the group made by reflections of a non-square rectangle. We can flip over the
vertical and horizontal axes. To close the group, we also need to consider flipping over both axis.

‘ nothing  horizontal vertical both
nothing nothing  horizontal  vertical both
horizontal | horizontal = nothing both vertical
vertical vertical both nothing  horizontal
both both vertical horizontal =~ nothing

This group is isomorphic to the XOR group we saw above. In fact, there are only 2 commutative groups
with 4 elements. A commutative group is one where the operator also satisfies a + b = b + a. This can be
proven precisely (the fundamental theorem of finite Abelian groups), but it has to do with the fact that 4
can only be factored as 4 x 1 and 2 % 2.

4.2 Generators, order

The behavior of a group can be analyzed by looking at the order of the group elements. The order of an
element is the number of times an element has to be added to itself to get the identity, where the order of
the identity element is 1.

For example, in Zg4,

e 0=0, order 1

e 14+14+14+1=0,order4
e 2+2=0, order 2

e 3+3+3+3=0, order 4

In the XOR group, which I will call K4. Because of isomorphism, you can also call it Dy or Z3 and many
other names.

e 00 =00, order 1
e 01 ¢ 01 = 00, order 2
e 10® 10 = 00, order 2
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e 11 ¢ 11 = 00, order 2

How do we know that an element eventually reaches the identity? Pigeonhole principle - if must eventually
reach a duplicate element after |S| additions. Let this duplicate element appear for the first time after k
and ko additions, where k1 < ko without loss of generality. Then, we can subtract = k; times from both
sides. We get 0 = x(k2 — k1). This means that adding z to itself ko — k1 times results in the identity, and
therefore every element eventually reaches the identity, and in no more that |S| times (we need |S| elements
for pigeonhole.

If there is an element of order |S], it is called a generator. Notice that Z, has 2 generators (1 and 3)
but K4 has no generators, so not all groups have generators. The number of generators in Z,, can be found
by the totient function ¢(n), which counts the number of relatively prime numbers from 1 to n — 1. The
reason 2 is not a generator is because 2 and 4 share a common factor, 2, and so we only iterate through even
numbers (multiples of 2) and not all of the numbers in the group. We can calculate the value of the totient
function as follows: for each prime factor p of n, 1/p of the numbers will share this factor. For example,
with n =10

T 0|1|2|3|4|5|6|7|8|9
zmod2|0|1|0|1]0|1]0]1|0]1
zmod5|0|1(2[3[(4|0|1]2]3|4

Exactly half of the numbers from 0 to 10 are even - because they are either 0 or 1 mod 2. Exactly
one fifth of the numbers from 0 to 10 are multiples of 5 - because they cycle through 0, 1, 2, 3,4 repeatedly.
Therefore, the number of integers relatively prime to 10 is 10 % (1/2) * (4/5) = 4 and there are 4 generators
- 1,3,7,9 which we can see are the only numbers that do not share a factor with 10.

5 Rings, Fields
A ring is a commutative group equipped with an additional operation, commonly referred to as multiplication.
1. All the properties of a group must be satisfied.
2. There exists a multiplicative identity, denoted 1 such that for all s € .S, sx1 =5 =1x%s.
3. Multiplication is also associative: for all s1,s2,83 € S, (81 * S2) * 3 = $1 * (82 * $3).
4. Multiplication is also commutative: for all s1,s2 € S, (51 * s2) = (82 * 51).

5. Addition and multiplication follow the distributive law. For all s1, s, 83 € S, s1 % (82 + 83) = 81 *x 82 +
s1 * s3 and (51+52)*53:sl*33+52*53.

A field is a ring with one additional property—a multiplicative inverse for every element (except 0) exists.

1. All the properties of a ring must be satisfied.

2. Each element (except for the additive identity) has a multiplicative inverse. For all s; € S # 0, there
exists so such that s; xs9o =1 = 59 % 57.

5.1 Examples of rings

The simplest example of a ring is the integers Z, which is not a field (2 has no inverse). The rational, real,
and complex numbers Q, R, C are all fields. We give more examples below:
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5.1.1 Integers modulo an integer

Let’s consider the integers modulo 4. We can build a multiplication table:

W N = O ¥
OO O oo
W N = O
N O N O
N W oW

This is a ring but not a field, because there is no element x such that 2z =1 (mod 4).

5.1.2 Integers modulo a prime

The integers mod a prime number are a field. Since every element has a multiplicative inverse, we can define
another group, the multiplicative group, over these elements. For the integers mod p, this is a group where
the operation is multiplication! Let’s consider the integers mod 5, rather than mod 4.

=W N~ O
W =N O
N == W oW
N W R Ol

=W N = O %
[l e NoleNo] Fo)

Note that although 0 does not have a multiplicative inverse, it does not matter. Each of the other elements
now has an inverse - an element where it multiplies to 1. It is common to consider the multiplicative group
of a field - the elements other than 0. Several notations can be used for this, we will denote this as Z;.

B W N | %
=W N R
W e NN
N B~ — W W
— N W R

But Z2 has 4 elements, and we already listed out all the groups with 4 elements. This means ZZ must be
the same group with the number renamed somehow. Specifically, Z: isomorphic to Z4. To see why, consider
writing each number in terms of the generator 2.

« |20 2t 23 22
20 [ 20 2@ 23 22
2l |21 22 20 93
23123 20 22 ol
22 |22 23 91 20

The second and third columns have been swapped, but this is the same as the Cayley table for Z4. In
fact, any of the generators of Z; work. We could even do multiplication with addition if you had a function
called log that performed this isomorphism such that log(a) + log(b) = log(ab).

5.2 Polynomial rings

For any ring R, the set of univariate polynomials with coefficients in R form a ring denoted R[x], under the
usual polynomial addition and multiplication operations.
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5.2.1 Detour: factoring and irreducibility

Similar to the special case of integers, we can define a more generalized notion of factoring for a large class
of rings?, which includes (but is not limited to) Z and K[z] when K is a field. The prime elements are often
called irreducible, which is formally defined as a non-zero element with no inverse and cannot be written
as a product of two non-invertible elements. For univariate polynomials in a field, a nonzero polynomial in
K|[z] is invertible if and only if it is a constant polynomial, so you can replace “invertible” with “constant”.

Note that whether a polynomial is irreducible depends on the ring. For example, 2% + 1 is reducible in
Clx] as it factors into (z — 7)(z + 7), but is irreducible in R[z] or Q[z] since it has no real roots.

5.2.2 Detour: ideals and quotient rings

Similar to modular arithmetic over the integers, we can generalize modular arithmetic over polynomials.
The abstract algebra terminology for the modulus is an “ideal”, and taking a ring R modulo an ideal I
yields another quotient ring R/I. The simplest type of ideals are principal ideals, where (a) denotes the
ideal defined by arithmetic modulo a ring element a € R. Our focus is on rings where the only ideals are
principal ideals®, which again include most familiar rings like Z and K[z] when K is a field.

For example, Z/(3Z) denotes the ring of integers modulo 3, Z[z]/(2? + 1) denotes the ring of integers
modulo the irreducible polynomial z2 + 1.

5.3 The Galois field of size 4

This field extends the XOR group K, we saw earlier. However, multiplication in this group is not repeated
addition! This group interprets the elements of K, as polynomials with coefficients in Zs—the coefficients
are either 0 or 1 and 1+ 1 =0. So for example (z + 1) + 2 =22+ 1 =0z + 1 = 1, and this corresponds to
XOR-ing 11 with 10 to get 01. Specifically, multiplication is defined by

1. Interpret each bit as the coefficient of a polynomial. So 10 is 1 4+ 0, 11 is 1z + 1, 01 is Oz + 1 and 0 is
0z + 0.

2. Multiply the polynomials modulo 22 4+ x + 1 and take each coefficient mod 2.

The multiplication table for this group looks like this:

* 0 1 T 1+
0 0 0 0 0
1 0 1 T 1+
T 0 T 1+xz 1
142 |0 14z 1 x

In fact, this can be generalized to all finite fields. The field of order p* can be constructed by considering
a degree-k polynomial with coefficients in Z, (so the trivial p! case is just the field Z,!). The multiplication
is taken modulo an irreducible polynomial—a & degree polynomial that doesn’t factor over the field Z,. It’s
a bit outside of group theory, but the choice of £2 + x + 1 is in fact forced for a field of 4 elements. x2 + 1
factors as (z + 1)(x + 1) =22+ 2r + 1 = 22 + 1 (mod 2), and 22 + x and 22 clearly factor.

6 Appendix: Notations for Problem Set 1

Notice that we define f) as an element of a family of one way functions, instead of f just being a OWF.

2called unique factorization domains (UFD)
3called a principal ideal domain (PID), a subclass of UFDs.
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Pr[statement: conditions| | The probability of the statement given the conditions.
fialx) The one way function A evaluated at .
r <& {0,132 x is a random A-bit string.
A(fa(x)) The adversary runs an algorithm given fy(x) as input.
w(N) A negligible function. For example, 2= and 2=/2 are negligible, but
A7100 is not. For a polynomial adversary, a negligible advantage is
often used in theoretical definitions.
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