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Recitation 1: Number Theory Background

1 Modular Arithmetic

Modular Arithmetic is a system of arithmetic within a finite set of integers, where numbers “wrap around”
when reaching a certain number. For example,

2 ≡ 12 ≡ 22 mod 10

Generally, for n > 0 and integers a and b, we can say that a ≡ b mod n if n divides a− b, also denoted
as n | a− b.

2 Basic Operations

For addition, subtraction and multiplication, modular arithmetic operations are consistent with normal
math. So for a, b, a′, b′ where a ≡ a′ mod n, b ≡ b′ mod n, we have the following:

• a+ b ≡ a′ + b′ mod n

• a− b ≡ a′ − b′ mod n

• a ∗ b ≡ a′ ∗ b′ mod n

Division is trickier and relies on the existence of multiplicative inverses. Given an integer a, a−1 is the
multiplicative inverse of a modulo n if a ∗ a−1 ≡ 1 mod n.

Note that a only has a multiplicative inverse modulo n if and only if gcd(a, n) = 1. You will prove a
special case of this fact in Problem Set 1.

On the other hand because for any non-zero element in modulo p where p is prime, there exists a mul-
tiplicative inverse so division works all the time. Other than the method of computing the multiplicative
inverse, division in modular arithmetic works the same as normal division.

For example, 1
2 + 1

3 = 5
6 over rationals. Considering modulo 7, we get 2−1 = 4, 3−1 = 5, 6−1 = 6 so

applying this to the fractional equation 1 ∗ 4 + 1 ∗ 5 ≡ 9 ≡ 5 ∗ 6 mod 7.

3 Modular Exponentiation

Exponentiation works the same way as it does in normal math, i.e. repeated multiplication. The interesting
part about exponentiation is how the value cycles as we go through the exponents.

For example, the powers of 2 and 6 appear as follows when simplified modulo 7:

21 22 23 24 25 26

2 4 1 2 4 1

61 62 63 64 65 66

6 1 6 1 6 1

In this case, 2 cycles every 3 elements. For any prime p and a ̸= 0 (mod p), a1, a2, . . . , ap−1 must cycle
through some subset of the p− 1 possible non-zero residues modulo p. The length of the cycle is also called
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the order, i.e. ord7(2) = 3.

For any prime p, there exists some integer g such that ordp(g) = p − 1. In other words, the cycle loops
through all possible residues in some order. g is often referred to as a primitive root or a generator of p. For
example, 3 is a generator modulo 7 since

30 31 32 33 34 35

1 3 2 6 4 5

4 Groups

The Diffie-Hellman key exchange protocol can be generalized to work with mathematical objects beyond
integers modulo a prime, such as elliptic curves.1 Both elliptic curves and modular multiplication fall under
a common mathematical abstraction called a group, which we will define below.

A group is a set S equipped with a binary operation, commonly notated as addition with +, that satisfies
the following properties:

1. The operation maps elements of the set into the set. Formally, for all s1, s2 ∈ S, s1 + s2 ∈ S.

2. There is an identity element, commonly notated 0. Formally, for all s1 ∈ S, s1+0 = s1 and 0+s1 = s1.

3. Each element has an inverse. This means that there is another element that takes the result to the
identity. Formally, for all s1 ∈ S, there exists s2 such that s1 + s2 = 0 and s2 + s1 = 0.

4. The order of operations does not matter (associativity). Formally, for all s1, s2, s3 ∈ S, (s1+s2)+s3 =
s1 + (s2 + s3).

4.1 Examples of groups

A common example of a group is the integers modulo n, for some number n. For example, let’s consider the
integers mod 4 with the operation of addition. There are 4 elements in the set S: {0, 1, 2, 3}. The operation
of addition maps the elements in the following way:

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

This looks a lot like a multiplication table and is referred to as a Cayley table for a group. Is there
another group with 4 elements?

⊕ 00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

This group is formed by the exclusive or operator on 2 bits. We can notice some patterns about groups

1In fact, real-world Internet protocols like TLS (essentially the s in https) and SSH almost exclusively use elliptic curves to
perform the Diffie-Hellman key exchange for performance reasons.
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• The element 0 appears in every row and column, because every element has an inverse.

• No value repeats in any row or column. If it did then we would have x+ y1 = x+ y2, but this means
y1 = y2.

• Every value appears in every row and column. As there are no repeats and only 4 values, they all must
appear.

What other groups of 4 elements are there? We can consider a group where we rotate a square. The
group operation is to apply the rotations consecutively

0 90 180 270
0 0 90 180 270
90 90 180 270 0
180 180 270 0 90
270 270 0 90 180

If this looks like a familiar pattern, you’re right. This group is actually the same as Z4, but all the
elements have different “names.” This is called an isomporphism.

We can also consider the group made by reflections of a non-square rectangle. We can flip over the
vertical and horizontal axes. To close the group, we also need to consider flipping over both axis.

nothing horizontal vertical both
nothing nothing horizontal vertical both

horizontal horizontal nothing both vertical
vertical vertical both nothing horizontal
both both vertical horizontal nothing

This group is isomorphic to the XOR group we saw above. In fact, there are only 2 commutative groups
with 4 elements. A commutative group is one where the operator also satisfies a + b = b + a. This can be
proven precisely (the fundamental theorem of finite Abelian groups), but it has to do with the fact that 4
can only be factored as 4 ∗ 1 and 2 ∗ 2.

4.2 Generators, order

The behavior of a group can be analyzed by looking at the order of the group elements. The order of an
element is the number of times an element has to be added to itself to get the identity, where the order of
the identity element is 1.

For example, in Z4,

• 0 = 0, order 1

• 1 + 1 + 1 + 1 = 0, order 4

• 2 + 2 = 0, order 2

• 3 + 3 + 3 + 3 = 0, order 4

In the XOR group, which I will call K4. Because of isomorphism, you can also call it D2 or Z2
2 and many

other names.

• 00 = 00, order 1

• 01⊕ 01 = 00, order 2

• 10⊕ 10 = 00, order 2
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• 11⊕ 11 = 00, order 2

How do we know that an element eventually reaches the identity? Pigeonhole principle - if must eventually
reach a duplicate element after |S| additions. Let this duplicate element appear for the first time after k1
and k2 additions, where k1 < k2 without loss of generality. Then, we can subtract x k1 times from both
sides. We get 0 = x(k2 − k1). This means that adding x to itself k2 − k1 times results in the identity, and
therefore every element eventually reaches the identity, and in no more that |S| times (we need |S| elements
for pigeonhole.

If there is an element of order |S|, it is called a generator. Notice that Z4 has 2 generators (1 and 3)
but K4 has no generators, so not all groups have generators. The number of generators in Zn can be found
by the totient function ϕ(n), which counts the number of relatively prime numbers from 1 to n − 1. The
reason 2 is not a generator is because 2 and 4 share a common factor, 2, and so we only iterate through even
numbers (multiples of 2) and not all of the numbers in the group. We can calculate the value of the totient
function as follows: for each prime factor p of n, 1/p of the numbers will share this factor. For example,
with n = 10

x 0 1 2 3 4 5 6 7 8 9
x mod 2 0 1 0 1 0 1 0 1 0 1
x mod 5 0 1 2 3 4 0 1 2 3 4

Exactly half of the numbers from 0 to 10 are even - because they are either 0 or 1 mod 2. Exactly
one fifth of the numbers from 0 to 10 are multiples of 5 - because they cycle through 0, 1, 2, 3, 4 repeatedly.
Therefore, the number of integers relatively prime to 10 is 10 ∗ (1/2) ∗ (4/5) = 4 and there are 4 generators
- 1, 3, 7, 9 which we can see are the only numbers that do not share a factor with 10.

5 Rings, Fields

A ring is a commutative group equipped with an additional operation, commonly referred to as multiplication.

1. All the properties of a group must be satisfied.

2. There exists a multiplicative identity, denoted 1 such that for all s ∈ S, s ∗ 1 = s = 1 ∗ s.

3. Multiplication is also associative: for all s1, s2, s3 ∈ S, (s1 ∗ s2) ∗ s3 = s1 ∗ (s2 ∗ s3).

4. Multiplication is also commutative: for all s1, s2 ∈ S, (s1 ∗ s2) = (s2 ∗ s1).

5. Addition and multiplication follow the distributive law. For all s1, s2, s3 ∈ S, s1 ∗ (s2 + s3) = s1 ∗ s2 +
s1 ∗ s3 and (s1 + s2) ∗ s3 = s1 ∗ s3 + s2 ∗ s3.

A field is a ring with one additional property—a multiplicative inverse for every element (except 0) exists.

1. All the properties of a ring must be satisfied.

2. Each element (except for the additive identity) has a multiplicative inverse. For all s1 ∈ S ̸= 0, there
exists s2 such that s1 ∗ s2 = 1 = s2 ∗ s1.

5.1 Examples of rings

The simplest example of a ring is the integers Z, which is not a field (2 has no inverse). The rational, real,
and complex numbers Q,R,C are all fields. We give more examples below:
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5.1.1 Integers modulo an integer

Let’s consider the integers modulo 4. We can build a multiplication table:

∗ 0 1 2 3
0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

This is a ring but not a field, because there is no element x such that 2 ∗ x = 1 (mod 4).

5.1.2 Integers modulo a prime

The integers mod a prime number are a field. Since every element has a multiplicative inverse, we can define
another group, the multiplicative group, over these elements. For the integers mod p, this is a group where
the operation is multiplication! Let’s consider the integers mod 5, rather than mod 4.

∗ 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Note that although 0 does not have a multiplicative inverse, it does not matter. Each of the other elements
now has an inverse - an element where it multiplies to 1. It is common to consider the multiplicative group
of a field - the elements other than 0. Several notations can be used for this, we will denote this as Z×

5 .

∗ 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

But Z×
5 has 4 elements, and we already listed out all the groups with 4 elements. This means Z×

5 must be
the same group with the number renamed somehow. Specifically, Z×

5 isomorphic to Z4. To see why, consider
writing each number in terms of the generator 2.

∗ 20 21 23 22

20 20 21 23 22

21 21 22 20 23

23 23 20 22 21

22 22 23 21 20

The second and third columns have been swapped, but this is the same as the Cayley table for Z4. In
fact, any of the generators of Z×

5 work. We could even do multiplication with addition if you had a function
called log that performed this isomorphism such that log(a) + log(b) = log(ab).

5.2 Polynomial rings

For any ring R, the set of univariate polynomials with coefficients in R form a ring denoted R[x], under the
usual polynomial addition and multiplication operations.
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5.2.1 Detour: factoring and irreducibility

Similar to the special case of integers, we can define a more generalized notion of factoring for a large class
of rings2, which includes (but is not limited to) Z and K[x] when K is a field. The prime elements are often
called irreducible, which is formally defined as a non-zero element with no inverse and cannot be written
as a product of two non-invertible elements. For univariate polynomials in a field, a nonzero polynomial in
K[x] is invertible if and only if it is a constant polynomial, so you can replace “invertible” with “constant”.

Note that whether a polynomial is irreducible depends on the ring. For example, x2 + 1 is reducible in
C[x] as it factors into (x− i)(x+ i), but is irreducible in R[x] or Q[x] since it has no real roots.

5.2.2 Detour: ideals and quotient rings

Similar to modular arithmetic over the integers, we can generalize modular arithmetic over polynomials.
The abstract algebra terminology for the modulus is an “ideal”, and taking a ring R modulo an ideal I
yields another quotient ring R/I. The simplest type of ideals are principal ideals, where (a) denotes the
ideal defined by arithmetic modulo a ring element a ∈ R. Our focus is on rings where the only ideals are
principal ideals3, which again include most familiar rings like Z and K[x] when K is a field.

For example, Z/(3Z) denotes the ring of integers modulo 3, Z[x]/(x2 + 1) denotes the ring of integers
modulo the irreducible polynomial x2 + 1.

5.3 The Galois field of size 4

This field extends the XOR group K4 we saw earlier. However, multiplication in this group is not repeated
addition! This group interprets the elements of K4 as polynomials with coefficients in Z2—the coefficients
are either 0 or 1 and 1 + 1 = 0. So for example (x+ 1) + x = 2x+ 1 = 0x+ 1 = 1, and this corresponds to
XOR-ing 11 with 10 to get 01. Specifically, multiplication is defined by

1. Interpret each bit as the coefficient of a polynomial. So 10 is 1x+0, 11 is 1x+1, 01 is 0x+1 and 0 is
0x+ 0.

2. Multiply the polynomials modulo x2 + x+ 1 and take each coefficient mod 2.

The multiplication table for this group looks like this:

∗ 0 1 x 1 + x
0 0 0 0 0
1 0 1 x 1 + x
x 0 x 1 + x 1

1 + x 0 1 + x 1 x

In fact, this can be generalized to all finite fields. The field of order pk can be constructed by considering
a degree-k polynomial with coefficients in Zp (so the trivial p1 case is just the field Zp!). The multiplication
is taken modulo an irreducible polynomial—a k degree polynomial that doesn’t factor over the field Zp. It’s
a bit outside of group theory, but the choice of x2 + x+ 1 is in fact forced for a field of 4 elements. x2 + 1
factors as (x+ 1)(x+ 1) = x2 + 2x+ 1 = x2 + 1 (mod 2), and x2 + x and x2 clearly factor.

6 Appendix: Notations for Problem Set 1

Notice that we define fλ as an element of a family of one way functions, instead of f just being a OWF.

2called unique factorization domains (UFD)
3called a principal ideal domain (PID), a subclass of UFDs.
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Pr[statement : conditions] The probability of the statement given the conditions.
fλ(x) The one way function λ evaluated at x.

x←R {0, 1}λ x is a random λ-bit string.
A(fλ(x)) The adversary runs an algorithm given fλ(x) as input.

µ(λ) A negligible function. For example, 2−λ and 2−λ/2 are negligible, but
λ−100 is not. For a polynomial adversary, a negligible advantage is
often used in theoretical definitions.
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# Review : modular arithmetic

· Arithmetic numbers wrap around after reaching a number m,where

called the modulus

Ex . m = 12, 11 + 2 = 13 = 1 (mod 12)

"2 hours after 11 am is 1
pm .

"

11-15 = -2 = 10 (mid 12)

"13 hars before 11 am is 10 pm .

"

2. 8 4 /mod 12)
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Why abstract algebra ?

· Prosts about abstract structures generalize to all instantiations .

· Proofs are often simpler after ignoring many "implementation details"
.

Allows generalizing the same cryplo systems to diverse

mathematical structures

· Diffie-Hellman hey exchange was originally over integers mod p,

but now works over elliptic curves as well
num

&
in fact , more efficient to compute.
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# Groups/alternate notation)

A group is a set equippedw/ an operation that satisfies

the following props:
T

sometimes denoted ab.

Closure : va , be S
,
a : bes

-

Identity : Eeed sit . UseS , sets
-

She usually denote e as the digit 1

&eyes : Vaed
,

EbeS St , a - b = 1
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(a · b) c = 9 : (b . c)-
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(a+ b) +c = a + (b +c)
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2 + 3 = 1
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., P3 under multiplications modulo aRe p . (i)
~

I : 34 1
+
= 1 Pset 1 :

i 2 = 3 3a) Prove Ep is a

group for all primes p.
4 I 3 3" = 2
42 4" = 4

3b) Show that primality is↑ury ,

21
i.e
., <m is Not a group for composite m.
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·

Generalizing modular arithmetic to an arbitrary ring :

R/(m) denotes the ring R module an element me R.

· When is R/SM) a field ? [[x]/(x2+ 1)

-Special case we saw (and you will prove in Pet 1) : (2x + 3)(5x + x

When R = &
,
R/(m) is a field iff m is prime. = 10x2 + 29x + 21

*
- General case is complicated for general rings R, = 29x + 11 (mod x2+ 1)
so we focus on R = KIX] where K is a field

In this case , KIx]/(f(x)) is a field if

foxt is an immusiblepolynomial,

= Room) is a field (m) is a maximal ideal
.
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# Irreducible polynomials
A polynomial fix) -> KEA] is irreducible if

1) fix) is not the constant or zero polynomial
2) f(x) cannot be factored inte two non-constant polynomials .

Examples Non-examples
2x + 3 in PRIX] x+ 2x + 1 in 1R[x]

(in general , degree l poly over(
(x2+ 2x + 1 = (x + 1)2)

any K[x]

x2+ 1 in RIX] x+ 1 in Ri (x+1 = (x - is . (x +i)

* Whether a polynomial is irreducible depends on the field !
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# The Galois field of size 4 : #4

#x = &z[x]/(x2+ x + 1)
Recall : KIx]/(f(x) is a field if

fix= x*+ x + 1 is irreducible over [2 [x] : fix) is an

·

immiblepolynomial,
fro = 1 +0

f(x) = 178
=> Fa ,

b S
.
t

.
(x - a)(x - b) = x + x + 1

Multiplication table : & & I t ↓ f ↓

O D D D D

I D I X x + 1

X
D X x+ 1 I

X + 1 O X + I I X
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# General Galois fields

# ph, a field of size ph
,

can be constructed as

Kp[x]/fix
where f(x) is an irreducible polynomial (over(p[x]) of degree K.

In PSET 13c)
, you will construct Eye as an exercise.
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