
Symmetric Encryption: Construction from PRF
Notes by 6.5610 Staff

February 4, 2026

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Definition of symmetric encryption

• Definition of pseudorandom function (PRF)

• Construction of symmetric encryption from any PRF family

• PRF example

Defining an Encryption Scheme

In what follows, we define the notion of an encryption scheme. We
start with the syntax.

Definition 1. A symmetric encryption scheme is associated with a
key space {Kλ}λ∈N, a message space {Mλ}λ∈N and a ciphertext
space {Cλ}λ∈N, and with two algorithms (Enc,Dec), where

Encλ : Kλ ×Mλ → Cλ

and
Decλ : Kλ × Cλ →Mλ

Correctness: For every λ ∈N, every m ∈ Mλ, and every k ∈ Kλ,

Decλ(k,Encλ(k, m)) = m.

What about security? How do we define security? If we only have security for random
messages then one can encrypt a
message m by choosing a random
message r ←R M and outputting
(Enc(k, r), r⊕m. This can be thought of
as a way of enhancing the security of an
encryption scheme.

Defining Security

When defining security one needs to define what the adversarial
goal is and what is its power. In the case of an encryption scheme,
the adversarial goal is to break the encryption of any message. A
weaker goal would be to break the encryption of random messages.
This may be too weak since in practice we do not encrypt random
messages.

symmetric encryption: construction from prf 2

Definition 2 (Take 1). An encryption scheme is said to be secure if
for every λ ∈ N and for every pair of messages m0, m1 ∈ Mλ it holds
that

Enc(k, m0) ≡ Enc(k, m1)

where k←R Kλ.

≡ means that the two distributions are equal, i.e.,

∀ c : Pr
k

[
Enc(k, m0) = c

]
= Pr

k

[
Enc(k, m1) = c

]
.

Is Definition 2 strong enough? Here is a scheme that satisfies this
definition, and is known as the one-time pad, invented by Vernam in
1917 (and used in WW1 and WW2):

Enc(k, m) = k⊕m

where Kλ =Mλ = {0, 1}λ.

Dec(k, c) = k⊕ c

Indeed, the one-time pad satisfies Definition 2. This was proven
formally by Shannon. However, if the adversary sees two ciphertexts
c1 and c2 they can compute the xor of the underlying encrypted
messages by computing c1 ⊕ c2. In addition, if the adversary sees a
single encryption c of a known message m then they can recover the
secret key k by computing k = c⊕m!

The important observation is that cirphertexts are functions of the
secret key and therefore may leak information about the secret key.
We need an encryption scheme that is secure even if the adversary
sees many ciphertexts.

Definition 3 (Take 2). An encryption scheme is said to be secure if
for every λ ∈ N, every ℓ ∈ N and all messages m1, . . . , mℓ ∈ Mλ and
m′1, . . . , m′ℓ ∈ Mλ it holds that

(Enc(k, m1), . . . ,Enc(k, mℓ)) ≡
(
Enc(k, m′1), . . . ,Enc(k, m′ℓ)

)
(1)

where the randomness is over k← Kλ.

This seems like a sufficiently strong definition, but it is impossible
to achieve! First, in order to have any hope of achieving this defini-
tion we must change the syntax and allow the encryption algorithm
to be randomized, since if it is deterministic then the adversary can tell
if the same message was encrypted twice. Sometimes this completeness condition

is weakened and the probability is
allowed to be 1− negl(λ).

Indeed, we allow the encryption algorithm to be randomized, and
change the correctness condition in Definition 1, as follows:

symmetric encryption: construction from prf 3

Correctness: For every λ ∈ N and for every m ∈ Mλ and every
k ∈ Kλ,

Pr[Decλ(k,Encλ(k, m)) = m] = 1

where the probability is over the random coin tosses of Enc.
Unfortunately, even with a randomized encryption algorithm,

achieving many-time security, as defined in Definition 3, is impos-
sible! Intuitively, the reason is that each ciphertext contains some
information about the secret key k, and eventually all the information
about k will be contained in these ciphertexts.

One thing you will learn in this class is that cryptography has
magical power to overcome impossibility results. In particular, the
way we overcome this barrier is by relaxing the security requirement,
and rather than requiring that the distributions in the left-hand-side
and the right-hand-side of Equation 1 are the same, we require that
they only look the same to polynomial time adversaries. Distribu-
tions that look the same to polynomial time adversaries are called
computationally indistinguishable, and is denoted by ≈. We formalize
this below.

Definition 4. A function µ : N → N is said to be negligible if for
every c ∈ N there exists nc ∈ N such that for every n > nc it holds
that µ(n) < n−c.

We denote by a ← Aλ if a is sampled
from the distribution Aλ. We denote by
k ←R Kλ is k is randomly chosen from
the set Kλ.

Definition 5. Let A = {Aλ}λ∈N and B = {Bλ}λ∈N be two families
of distributions. We say that A and B are computationally indistin-
guishable, denoted by A ≈ B, if for every probabilistic polynomial
time (PPT) distinguisher D there exists a negligible function µ such
that for every λ ∈N,

|Pr[D(a) = 1]− Pr[D(b) = 1]| ≤ µ(λ)

where a← Aλ and b← Bλ.
λ is the security parameter. The larger
the security parameter the more secure
the scheme is, but also the less efficient
it is.

Definition 6 (Take 3). An encryption scheme is said to be secure if
for every λ ∈ N, every ℓ ∈ N and all messages m1, . . . , mℓ ∈ Mλ and
m′1, . . . , m′ℓ ∈ Mλ it holds that

(Enc(k, m1), . . . ,Enc(k, mℓ)) ≈
(
Enc(k, m′1), . . . ,Enc(k, m′ℓ)

)
(2)

This seems like a super strong secu-
rity guarantee! However, the golden
standard definition is even stronger! It
also allows the adversary to see decryp-
tions of ciphertexts of its choice. This is
referred to as security against chosen
ciphertext attacks (CCA-security).

The actual definition is a bit more complicated and allows the ad-
versary to choose the messages adaptively based on previously seen
ciphertexts. This is called security against adaptively chosen plaintext
attacks.

Definition 7. An encryption scheme (Enc,Dec) is said to be secure
against adaptively chosen plaintext attacks (CPA secure) if for every

symmetric encryption: construction from prf 4

PPT adversary A there exists a negligible function µ such that for
every λ ∈ N, A wins in the following game with probability at most
1
2 + µ(λ):

• The challenger chooses a key k← Kλ.

• The adversary A given 1λ chooses a message mi ∈ Mλ and
receives ci ← Encλ(k, mi).

This step can be repeated polynomially many times.

• The adversary A chooses m0, m1 ∈ Mλ.

• The challenger chooses a random bit b ← {0, 1}, generates
c← Enc(k, mb), and sends the ciphertext c to the adversary.

• The adversary given c outputs a bit b′.

We say that A wins if b′ = b.

Constructing a CPA-Secure Encryption Scheme

The observation is that if the secret key was an infinitely long pad
then we could use it to encrypt all our messages, each time using a
fresh part of the pad. In other words, if the secret key was a perfectly
random function F : {0, 1}λ → {0, 1}, then we could encrypt a
message m as follows:

Enc(F, m) = (r, F(r)⊕m)

and
Dec(F, (c1, c2)) = F(c1)⊕ c2.

As long as we encrypt significantly less than 2λ/2 messages we do
not expect to see a collision (i.e., the same r used twice) and hence
security follows from the one-time security of the one-time pad.

Here is the first magic of cryptography: We can construct effi-
ciently computable functions that look like truly random ones! Such
functions are called pseudorandom functions.

Definition 8 (Pseudorandom function). A pseudorandom function
family consists of a family of functions {Fλ}λ∈N, where for every
λ ∈ N, Fλ : Kλ × Xλ → Yλ, and for every PPT algorithm A there
exists a negligible function µ(·) such that for every λ ∈N, In complexity theory, we model an

efficient algorithm as polynomial time
(or probabilistic polynomial time).
We think of negligible as “practically
never.” A takes as input 1λ since it is
a PPT algorithm, and we allow it to
run in time poly(λ). This is a notational
hack used by theoreticians.

|Pr[AFλ(k,·)(1λ) = 1]− Pr[ARλ(·)(1λ) = 1]| ≤ µ(λ)

where k ←R Kλ and Rλ : Xλ → Yλ is a truly random function;
A has oracle access to Fλ(k, ·) or Rλ(·), and can make arbitrary or-
acle calls to its function. These oracle calls x1, . . . , xt ∈ Xλ can be
adaptively chosen based on the values returned by the oracle thus far.

For concreteness, we can think of X = {0, 1}n and Y = {0, 1}m.

symmetric encryption: construction from prf 5

Using a PRF to construct a CPA-secure encryption scheme

Let F = {Fλ}λ∈N be any PRF family where Fλ : Kλ ×Xλ → Yλ. Sup-
pose Y = {0, 1}m(λ). We use F to construct a symmetric encryption
scheme where the key-space is Kλ, the message space is {0, 1}m(λ),
and the ciphertext space is Xλ × {0, 1}m(λ). Specifically,

Encλ(k, m) = (r, m⊕ F(k, r))

where r←R Xλ.
Decλ(k, (r, c)) = F(k, r)⊕ c.

The CPA security of this scheme can be shown given the secu-
rity of the underlying PRF, and we will concretely relate the success
probabilities of the PPT adversaries in the next lecture.

PRF Example

Stream ciphers such as ChaCha20 used in TLS are PRFs.

Fk(i) = ChaCha20k(nonce, i)

where i is a counter, and Fk(i) is XOR’ed with the plaintext stream to
produce a ciphertext stream. We will describe ChaCha20 in the next
lecture.

PRF for Integrity

So far we saw how to use a PRF to encrypt. Suppose we wish to en-
sure authenticity of the ciphertext; namely, ensure that an adversary
did not change the ciphertext, and that the ciphertext obtained was
indeed the one sent by the sender. This can be done also using a PRF.
I will "sign" a message c (the notation is due to the fact that I am
thinking of this message as being a ciphertext) by appending to c the
tag F(k, c). This tag is called a Message Authentication Code (MAC). We
will discuss this in more detail in the public-coin (where such a tag is
referred to as a signature) setting later in this course.

References

	Outline
	Defining an Encryption Scheme
	Defining Security
	Constructing a CPA-Secure Encryption Scheme
	Using a PRF to construct a CPA-secure encryption scheme
	PRF Example
	PRF for Integrity

