Massachusetts Institute of Technology
6.5610: Applied Cryptography and Security February 3, 2026
Professor Srini Devadas Due: February 13, 2026 at 4:59pm

Problem Set 1

Please submit your problem set, in PDF format, on Gradescope. FEach problem should be in a separate page.

You are to work on this problem set in groups. For problem sets 1 and 2 we will randomly assign the
groups for the problem set. After problem set 2, you are to work on the following problem sets with groups
of your choosing of size three or four. If you need help finding a group, try posting on Piazza. See the course
website for our policy on collaboration. Each group member must independently write up and submit their
own solutions.

Homework must be typeset in IWNTEX and submitted electronically! Each problem answer must be provided
as a separate page. Mark the top of each page with your group member names, the course number (6.5610),
the problem set number and question, and the date. We have provided a template for KTEX on the course
website (see the Psets tab at the top of the page).

Problem 1-1. One-way functions and collision resistance

A family of functions {f\}aen, where each fy : {0,1}* — {0,1}*, is one-way function (OWF) if each f is
computable in polynomial-time and, for every polynomial-time adversary A, there exists a negligible function
w such that for every A € N,

o & A
= S] <o

In other words, given f)(x) and X it is difficult to find 2’ such that fy(z') = fi(z).

A family of functions {f)}xen is said to be collision resistant if it is polynomial-time computable, for every
AEN, fy:{0,1}* = {0,1}*, and for all polynomial-time adversaries A, there exists a negligible function p
such that for every A € N,

Pr [fA(m) =@ Nz #£2 : (z,2") « A(lA)} < p(A).

In other words, it is difficult to find distinct z, 2’ such that fy(z) = fi(z').

For each of the following functions g = {g}ren determine if g is necessarily a one-way function (OWF). If
so, explain in a few sentences why it is a OWF, and if not, provide an attack.

For simplicity, in what follows we define f and g for a given input length, and omit the subscript A from the
collision resistant hash functions.
(a) Let f:{0,1}* — {0,1}* be a OWF, and let g : {0,1}* — {0,1}* where g(z) = f(z) | =[0].
(b) Let f:{0,1}* — {0,1}* be a OWF, and let g : {0,1}* — {0,1}* where g(x) = f(f(z)).
(c) Let g:{0,1}* — {0,1}* be collision resistant. Is g|(o 1j2x necessarily a OWF (where g|(o1}2x denotes
the function g restricted to the domain {0, 1}2*)?

For each of the following functions g determine if g is necessarily a collision resistant function. If so, explain
in a few sentences why it is collision resistant, and if not, provide an attack.

(d) Let f:{0,1}* — {0,1}* be collision resistant, and let g : {0,1}* — {0,1}* where g(z) = f(z[: —1]),
where x[: —1] is « with the last bit removed.

(e) Let f:{0,1}* — {0,1}* be collision resistant, and let g : {0,1}* — {0,1}* where g(z) = f(f(z)).

6.5610 : Handout 1: Problem Set 1 2

Problem 1-2. Hellman Tables

Hellman’s algorithm is cryptanalytic tool for function inversion with preprocessing. These preprocessing
attacks are useful when an attacker wants to invert the same cryptographic function (e.g., a hash function)
many times at different points.

A preprocessing algorithm for function inversion works in two phases:

¢Offline (preprocessing) phase: The attacker evaluates f many many times and outputs a data
structure oy of size S that encodes its knowledge about f.

e¢Online phase: The attacker has a challenge instance y = f(z), for an unknown z, and the attacker
wants to find x. The attacker uses it’s precomputed data structure oy, makes 1" queries to the function
f and outputs a value x’ such that f(a') = y.

The goal is to jointly minimize the size S (in machine words) of the precomputed data structure oy, along
with the running time T of the online algorithm.

(a) Let F':{0,1}* x {0,1}* — {0,1}* be a PRF. Say that an attacker wants to perform precomputation
relative to F' such that, later on, given oracle access to F'(k,-) for some unknown key, the attacker
can recover k. Explain how the attacker can use a precomputation attack to solve this problem.

(b) In 1-2 sentences, give a preprocessing algorithm that inverts an arbitrary function f: [N] — [N] using
space S = 0 and online time T' = N, where we define [N] = {1,2,3,...,N}.

(c) In 1-2 sentences, give a preprocessing algorithm that inverts an arbitrary function f: [N] — [N] using
space S = N and online time 7" = 0.

Hellman’s method achieves a much more interesting time-space trade-off than the algorithms you constructed
in (a) and (b). To see how Hellman’s algorithm works, let’s examine the case where f is a random permutation
defined on some space X (such as {0,1}*), that is f : X — X and is one-to-one. We can view the function
f as a directed graph G = (V, E) with vertex set V = X and edge set £ = {(z,y) : f(z) = y}.

During the preprocessing phase, Hellman’s algorithm traverses the graph and stores back pointers every ¢
steps. Then, when inverting a point in the online phase, the algorithm walks the graph forward, checking
for back pointers in the table at each step until it hits the starting value again. The online algorithm then
return the parent node of the starting value. Since f is a permutation, each node in GG will have one parent
and thus G will be a union of cycles.

(d) What is the correct value of ¢ to minimize S and 7' as stated above? Given this value, what are the
values of S and T'7

When performing this algorithm, the amount of storage required for Hellman’s data structure is often too
large to fit in a computer’s memory, so it must be stored on disk. Thus, the online algorithm needs to make
roughly ¢ disk accesses when exploring the graph. However, we can decrease the amount of disk accesses by
performing some tricks, which can improve the runtime of the algorithm.

(e) Imagine that the online phase of Hellman’s algorithm runs on a computer with an arbitrarily large
hard disk and polylog(IN) RAM memory. Explain how to modify Hellman’s algorithm in such a way
that the online algorithm requires only O(1) disk accesses per inversion.

You may assume that you have access to a truly random function on whatever domain and range you
like. Hint: Think about how one would determine if a back pointer exists at value x before checking
the table.

Problem 1-3. Finite rings and fields

For any positive integer n consider the ring Z,, that consists of the elements {0, 1,...,n — 1} where addition
and multiplication are modulo n.

6.5610 : Handout 1: Problem Set 1 3

Figure 1: Example of what G might look like. The red arrows represent the back pointers from Hellman’s
algorithm.

(a) Show that for every prime p, every non-zero element in Z, has a multiplicative inverse (and hence it
is a field, in which case it is often denoted by Fy).
(Hint: You may use the extended GCD algorithm that given two integers x,y outputs two integers
a,b such that a -z 4+ b-y = GCD(z,y) where here arithmetic is over the integers; assume standard
integer properties).
(b) For any non-prime n, construct an element a € Z, that does not have an inverse (and hence F,, is
not a field)
(c) Consider the polynomial f(z) = 22 + 2z + 2 over Fs.
1. Show that f(x) is irreducible over Fj.
(Hint: f is irreducible over Fs if and only if it has no roots in over Fs).
2. Consider the finite field Fz2 = F3/f(z), which consists of all linear functions over F3 where
addition is coordinate-wise modulo 3 and multiplication is done modulo the polynomial f(zx).
List all the elements in this field.
3. Find the order of the element x in F32, namely, find the smallest integer a > 0 such that z® = 17

Problem 1-4. Birthday attack on Even-Mansour encryption scheme

In the class, we see how AES is constructed by alternately XOR-ing with the key and applying a random
permutation 7. Here, we consider the single-key Even-Mansour scheme, similar to a one-round AES:

Enc(m) =n(m @ k) Dk,

where the secret key k& and the message m are both n bit long. Your job is to break the scheme with a
birthday attack. The first step of the attack would be to collect many pairs of (m;, Enc(m;)), then construct
a computable function f such that if two messages collide (i.e. f(my) = f(mz)), it reveals the secret key by
somehow mixing those two messages.

(a) Find such a function f, and how a collision pair reveals the secret key.
Hint: Notice that for any two messages mq, ma, Enc(my) @ w(my @ k) = Enc(mz) ®7(mge @ k). Under
which condition (on m; and ms) can we eliminate the only unknown k?

6.5610 : Handout 1: Problem Set 1 4

Now we have transformed the problem of recovering the secret key into a collision-finding problem. Assuming
that 7 is a random-like function, we can also model your f as a random function. By the birthday paradox,
we can find collisions with @(2”/ 2) plaintexts. However, since f is random-like, we can hit a collision “by
accident”, in which case we cannot recover the secret key.

(b) Prove that if two uniformly random messages my, mqo satisfy f(mi) = f(ms2), there exists a constant
¢ such that the probability of mi, mso revealing the secret key is at least ¢. You may model every
f(z) as a random n-bit string.

This means that if we try enough collision pairs, we should be able to find the secret key. With all the theory
in our heads, we now implement the attack in Python.

(¢) On Piazza, you can find a zip file psetl.zip that contains the file needed for this problem.

e psetl_enc.py implement the Even-Mansour encryption with a hidden key as a function enc (m:int)
-> int, but the code is obfuscated. Your goal is to find the key (hopefully not by de-obfuscate
the code).

e psetl main.py provides the skeleton code, including an example encryption scheme. The ran-
dom permutation 7 is the same for the example scheme and the one in pseti_enc.py.
You can modify the key and see if your attack can recover the key correctly.

Please write down the secret key (in hex format) as the answer and submit your code (psetl main.py)
to “Problem Set 1 Code” on Gradescope. It will be autograded on a set of private keys. We read
your code for sanity checks, so make sure that the code is fairly understandable.

Note: On our Macbook Pro 2023, the attack takes less than 10 seconds for the test implementation,
and 3-15 minutes for the obfuscated version with the secret key. If you want to speed it up, try
implementing Pollard’s rho algorithm, or even the parallelized version.

