
Project Report 6.5610
Generalizing Yao’s XOR Lemma from

Multicalibration

Rohan Goyal∗

rohan g@mit.edu

Jaehyun Koo∗

koosaga@mit.edu

John Kuszmaul∗

john.kuszmaul@gmail.com

Alex Luchianov∗

lknv@mit.edu

Spring 2025

1 Introduction

1.1 Yao’s XOR Lemma

Yao’s XOR Lemma [Yao82,GNW11] is an important result in cryptography,
showing that the simple operation of XOR can be used as a powerful tool
for hardness amplication. This lemma lays the foundation for many crypto-
graphic constructions, which we will visit later. We first begin by presenting
the statement of Yao’s XOR Lemma:

Definition 1.1 (δ-hard functions). A function f : {0, 1}n → {0, 1} is called
δ-hard, if for any circuit C of size at most poly(n),

Prx∈{0,1}n [C(x) ̸= f(x)] ≥ δ

Note that every function is at most 1/2-hard. A trivial circuit that ignores
the input x and evaluates a majority of f(x) will guess f with at least 1/2

∗MIT CSAIL

1

probability. In that sense, one can consider δ-hard functions as the one where
an adversary cannot have any advantage over 1

2
− δ, where the advantage is

the probability it can correctly guess a single bit minus 1/2.

Definition 1.2 (δ-hardcore functions). A function f : {0, 1}n → {0, 1} is
called δ-hardcore, if for any circuit C of size at most poly(n),

Prx∈{0,1}n [C(x) ̸= f(x)] ≥ 1− δ

Lemma 1.3 (Yao’s XOR Lemma, informal). Let f be a δ-hard function. Let
g : ({0, 1}n)k → {0, 1} be the following:

g(x1, x2, . . . , xk) =
k⊕

i=1

f(xi)

Then, for all ϵ > 0, g is 1
2
− 1

2
(1− 2δ)k − ϵ hard.

It’s worth noticing that the bound of the lemma is essentially tight. Con-
sider a δ-hard function f with an adversary circuit C that guesses f with
probability almost 1 − δ. Using this circuit, we guess g by taking the XOR
of all guesses f(xi). The probability that this circuit guesses g equals the
probability where it fails to guess f(xi) by an even number of times, which
is:

k/2∑
i=0

(
k

2i

)
δ2i(1− δ)k−2i

=
1

2
(((1− δ) + δ)k + ((1− δ)− δ)k)

=
1

2
(1 + (1− 2δ)k)

Hence, g can be at most 1
2
− 1

2
(1− 2δ)k hard.

1.2 Applications in Cryptography

Yao’s XOR Lemma is a fundamental result of complexity theory and has
several important cryptographic applications. Below, we list some of its
important applications to show the wide implications of Yao’s XOR Lemma.

2

Hardness Amplification. The most general implication of Yao’s XOR
Lemma is that one can take a slightly hard function and construct a func-
tion arbitrarily close to 1/2-hard by simply taking an XOR of f(xi). As
seen earlier, no function can be harder than 1/2, so this lemma is a way
to construct a very hard random function with relatively simple ingredients.
In general, this concept is known as hardness amplification and is very use-
ful in cryptography, where the notion of security is based upon hardness.
In that sense, hardness amplification is a security amplification, and Yao’s
XOR Lemma implies one can achieve near-perfect security with mildly secure
functions and simple primitives.

Hardcore Predicates. Let f : {0, 1}n → {0, 1}n be a permutation. A
hard-core predicate for f is a function B : {0, 1}n → {0, 1} such that for any
PPT adversary A can predict B(x) with at most 1/2 + negl(n) probability,
given the value f(x).

Given any one-way permutation, Yao’s lemma provides a way to construct
a hardcore predicate from a permutation. Let f : {0, 1}n → {0, 1}n be a one-
way permutation. In the function f , there is a bit i ∈ [n] such that any PPT
adversary can guess with at most 1 − 1

n
+ negl(n) probability - otherwise,

using union bound, we can invert a permutation. This bit doesn’t have a
significant security per se, but Yao’s XOR Lemma can be used to remove the
advantage.

Let g(x1, x2, . . . , xm) = f(x1)||f(x2)|| . . . ||f(xm), where a||b denotes the
concatenation of a and b. g is a permutation, and each of the i-th bit of f
is 1

n
− negl(n) hard. If m ≥ Ω(n log n), Yao’s lemma implies that the XOR

of all i-th bits in {f(xj)}mj=1 will be 1
2
− negl(n) hard. From this, we can

construct a hardcore predicate by simply taking the XOR of all i-th bits in
each of the f(xj)s.

Pseudo Random Number Generators. In the previous paragraph, we
showed how to generate a permutation that contains a hardcore predicate
using Yao’s lemma. Given a hardcore predicate B and its associated permu-
tation f , Blum and Micali [BM82] proposed a very simple scheme to generate
a pseudo-random number generator, as follows:

• In initialization stage, sample a random seed S from {0, 1}n.

• For each query, output B(S) as a random bit, and set S ← f(S).

3

This simple scheme, commonly known as the Blum-Micali Generator, is one
concrete application of Yao’s lemma in practical cryptographic primitives.

1.3 IHCL

As the previous section shows, Yao’s XOR Lemma is fundamental in cryp-
tography. However, the proof of this lemma is quite technical. The most
popular, although not original, proof of the XOR lemma is done by Impagli-
azzo’s Hard-Core Lemma, which we abbreviate as IHCL.

Theorem 1.4 (IHCL, informal, [Imp95,Hol05]). Let F be a family of boolean
functions on X , ϵ > 0, and g : X → {0, 1} a function that is (F ′, δ)-
hard, meaning that Pr[f(x) ̸= g(x)] ≥ δ for all functions f that have “low
complexity” relative to F . Then there exists a set H ⊆ X of size at least
2δ|X | such that g is (F , 1/2− ϵ)-hard on H.

Note that Definition 1.1 is replaced with the notion of (F ′, δ)-hard, which
more explicitly states the computation bound as a circuit with a certain size
restriction that can evaluate any function on F . The formal definition of the
hardness will be presented later in Section 2.

Intuitively speaking, IHCL implies that every function with difficulty δ
has a hardcore of size 2δ|X | which is very hard to compute for an adversary.
Note that this definition of hardcore is not the same as that of hardcore
predicates, although they share a similarity in that the adversary does not
have an advantage.

Theorem 1.4 was first proved in [Imp95] with a looser lower bound of
|H| ≥ δ|X |, and it was improved to the optimal lower bound of |H| ≥ 2δ|X |
in [Hol05]. This optimal lower bound is required in proving Yao’s XOR
Lemma, as in the form of Lemma 1.3.

Given this optimal lower bound of [Hol05], we can prove Yao’s lemma.
By Theorem 1.4, for a δ-hard function there is a hardcore of size at least
2δ · 2n. This means, for a random xi, the probability that it is inside the
hardcore is at least 2δ, and since each xi is independent, the probability that
an input does not lie in any of the hardcore is at most (1 − 2δ)k. For all
other 1 − (1 − 2δ)k portion of inputs, they have at least one input i ∈ [k]
such that xi belongs to the hard-core of i. Since f(xi) is

1
2
−ϵ hard, whatever

advantage it gathered on ⊕j ̸=if(xj) is nullified by this unpredictable bit from
f(xi). This establishes 1

2
− ϵ′ hardness over 1− (1− 2δ)k portion of inputs,

which gives us a desired bound.

4

Figure 1: If a given function has a hardcore (denoted as H), then one of the
input xi will hit a hardcore with probability at least 1− (1−2δ)k. Since f(xi)
in a hardcore is hard to guess, the XOR-ed function is hard as well.

1.4 Our contributions

In the recent work of Casacuberta, Dwork, and Vadhan [CDV24], they in-
troduced IHCL++, which is a stronger and more general version of IHCL.
As we’ve seen that Theorem 1.4 implies Lemma 1.3, a natural question is
whether the improvement made in IHCL++ could be applied to Yao’s lemma.
We answer this affirmatively, which we call as Yao++.

The key improvement made in Yao++ is to replace the notion of hard
functions with a partition instead. In IHCL, we needed an assumption that
the given function should have a certain degree of hardness - this is a concept
that is somewhat unwieldy to deal with, given that it is notoriously hard to
prove the incomputability of functions. This was improved in IHCL++ where
we don’t need any assumptions about the hardness of the function. Instead,
for any given function g : X → {0, 1}, IHCL++ shows that a partition
P exists where individual partitions are either negligibly small or hard to
guess - the hardness guarantee in IHCL++ comes from a balance parameter
bP = min(Ex∈P [g(x)], 1 − Ex∈P [g(x)]), where P ∈ P . In other words, if the
expected value of the given function inside P is close to 1/2, the hardness
guarantee follows.

In our work, we define Yao++ in a way that it captures the notion of
balanced parameter in IHCL++. Then, we prove Yao++ in a self-contained

5

Figure 2: A diagram that shows the relation between Yao, IHCL, Yao++,
IHCL++. Arrows denote implication.

way, and show that Yao++ implies Yao’s lemma. Our proof is self-contained
and considerably shorter than the other proofs, specifically those that rely
on IHCL [Imp95, Hol05] and are thus heavily involved. As a result, our
Yao++ has the additional advantage of being a concise proof of the well-
known cryptographic theorem.

2 Recent Progress (Multicalibration + Com-

plexity)

Recent progress on multicalibration has allowed for generalizations of several
theorems. In particular, Casacuberta, Dwork, and Vadhan [CDV24] showed
in 2024 stronger and more general version of Impagliazzo’s Hardcore Lemma
(IHCL), the Dense Model Theorem, and characterizations of pseudoentropy.
The original characterizations of these results all can be proved using the
Regularity lemma [TTV09]. However, instead of using the Regularity lemma
as the central starting point, the work of [CDV24] instead explores how we
can approach these results using the Multicalibration theorem [HJKRR18]
instead.

In order to understand these recent results, we begin with the Multicali-
bration theorem. The theorem, as stated below, is verbatim from [CDV24].
In particular, it is presented in the language of partitions.

6

Theorem 2.1 (Theorem 2.1 (Multicalibration Theorem) from [CDV24].
Originally from [HJKRR18]). Let X be a finite domain, F be a class of
functions f : X → {0, 1}, g : X → [0, 1] an arbitrary function, D a probabil-
ity distribution over X , and ε, γ > 0. There exists a partition P of X such
that:

1. P has O(1/ε) parts.

2. P has “low complexity” relative to F . Specifically, there is a boolean
circuit C : X → [k] (i.e., with gates of fan-in at most 2 and ⌈log |X |⌉
input gates and ⌈[k]⌉ output gates) of size poly(1/ε, 1/γ, log |X |) with
O(1/ε2) oracle gates instantiated with functions from F such that the
P = {C−1(1), . . . , C−1(k)}.

3. P is (F , ε, γ) multicalibrated for g on D: that is, for all f ∈ F and all
P ∈ P such that Prx∼D[x ∈ P] ≥ γ, we have∣∣Ex∼D|P [f(x) · (g(x)− vP)]

∣∣ ≤ ε. (1)

where vP := Ex∼D|P [g(x)] and D|P denotes the conditional distribution
D|h(x)∈P .

We highlight that unlike IHCL, this new IHCL++ is assumptionless (i.e.,
there is no δ-hard assumption in the theorem statement). As we will see
below, it turns out that IHCL++ is also strictly more general; IHCL++
implies IHCL. One final advantace of IHCL++ over IHCL, is that using
the techniques of multicalibration, the proof of IHCL++ is relatively simple
(though still very far from trivial) compared to past proofs of IHCL [CDV24].

2.1 New Method to get IHCL

The Multicalibration theorem was used by [CDV24] to prove a new, more
general variation of Impagliazzo’s Hardcore Lemma (IHCL). [CDV24] refer to
this new theorem as IHCL++. We include the theorem below in its verbatim
form.

In order to understand the significance of IHCL++, let’s unpack some of
the terminology used in the theorem statement. First, ηP := Prx∼D[x ∈ P]
dentotes the size parameter of a piece P of the partition.

7

Figure 3: A diagram depicting the hardcore distribution within each of the
partitions in IHCL++.

Definition 2.2 (verbatim from [CDV24]). Given a set of functions F = f
on a finite domain X , Ft,q,k denotes the class of partitions P of X such that

there exists f̂ ∈ Ft,q, f̂ : X → [k], satisfying P = {f̂−1(1), . . . , f̂−1(k)}.
In turn, recall that Ft,q is the set of functions that can be computed by a

circuit of size at most t with at most q oracle calls to the family of functions
F .

For completeness, we also include a formal definition of (F , δ)-hardness,
which is the verbatim definition used by [CDV24].1

Definition 2.3 (formal definition of (F , δ)-hardness, verbatim from [CDV24]).
Given a class F of randomized functions f : X → {0, 1}ℓ, a distribution D
on X , an arbitrary randomized function g : X → {0, 1}ℓ, and δ > 0, we say
that g is (F , δ)-hard on D, if for all f ∈ F ,

Pr
x∼D

[f(x) = g(x)] ≤ 1− δ.

Note that the randomness in the probability is also drawn over the coins
used by the randomized functions f and g. Further, note that for ℓ = 1, the
hardness cannot be greater than 1/2−ε (as a coin toss can achieve δ = 1/2).

1Some other works in the area use the alternate notation of δ′-hardness, where δ′

denotes the adversary’s advantage over a random coin toss. In our notation, this denotes
a 1/2− δ hardness.

8

Figure 4: A visual depiction of the argument that IHCL++ implies IHCL.
We obtain one large hardcore set by combining the hardcore sets from each
piece of the partition.

Theorem 2.4 (Theorem 3.2 (IHCL++) from [CDV24]). Let X be a finite
domain, let F be a family of functions f : X → [0, 1], let g : X → [0, 1] be
an arbitrary function, D a probability distribution over X , and let ε, γ > 0.
There exists a partition P ∈ Ft,q,k of X with t = O(1/(ε4γ) · log(|X |/ε)),
q = O(1/ε2), k = O(1/ε) which satisfies that for all P ∈ P such that ηP ≥ γ,
there exists a distribution HP in P of density 2bP in D|P such that grand is
(F rand, 1/2− ε

2bP (1−bP)
)-hard on HP .

2.2 Proof that IHCL++ implies IHCL

Using IHCL++, we can actually recover the original IHCL theorem, thus
making IHCL++ more general [CDV24]. As [CDV24] notes, “the key idea is
to ‘glue together’ the hardcore distributions HP within each P ∈ P , where in
this gluing together each p ∈ P is weighted acccording to its size parameter
ηP of the set P .”

The first step of their analysis is to prove the following proposition.

Proposition 1 (Proposition 3.3 from [CDV24]). Let X ,D,F , g, ε, γ,P , t, q, k
as in Theorem 2.4. Moreover, assume that g is (Ft+k,q, δ)-hard, and suppose
that ηP ≥ γ for all P ∈ P. Then,

EP∼P(D)[bP] ≥ δ.

9

Intuitive Understanding of Proposition 1. Proposition 1 essentially
seeks to understand IHCL++ while applying the assumption that g is δ-hard.
Using this assumption, we would ultimately like to formally recover IHCL.
For the full proof, see Section 3.3 of [CDV24], however, here we will sketch
an intuitive understanding of the key ideas. We can understand Proposition
1 as claiming that the expectation of the balance parameter of a partition,
sampled uniformly from the elements of X , is at least δ. This lower bound
means that the partitions on (a weighted) average, cannot be too imbalanced
(this means each piece of the partition is itself hard). The remainder of the
proof follows via combining the hardcore distributions from each partition
that is sufficiently imbalanced and with sufficiently large size parameter to
recover the original IHCL theorem.

In the following section, we will see a similar argument to show how
Yao++ implies Yao.

3 Version of Yao without assumptions

Lemma 3.1 (Hardcoreness of function by sampling its components). The
hardcoreness of a function f such that f can be partitioned into P1, P2, . . . Pk

with densities δ1, δ2, . . . δk and respective hardcorenesses ϵ1, ϵ2, . . . ϵk is ϵf where:

ϵf ≤
k∑

i=1

δiϵi

Lemma 3.2 (Hardcoreness of sampling k functions and XOR-ing them).
Let there be functions f1, f2 . . . fk and random variables X1, X2 . . . Xk sampled
according to some arbitrary distributions D1, D2, . . . Dk such that fi(Xi) is ϵi-
hardcore. Then, the hardcoreness of a function f such that f(X1, X2, . . . Xk) =
f1(X1)⊕ f2(X2)⊕ · · · ⊕ fk(Xk) is ϵf where:

ϵf = min(ϵ1, ϵ2, . . . ϵk)

Proof. Assume otherwise. Then, there must be a circuit C such that:

Pr
Xi∼Di

[C(X1, X2, . . . , Xk) = f(X1, X2, . . . , Xk)] > 1 + ϵf

10

Let us fix all other inputs, except for Xϵ−min where ϵ − min is chosen
so that min(e1, . . . ϵk) = ϵϵ−min. Then, by averaging over all tuples of fixed
inputs, we know that there must exist a tuple of fixed inputs such that:

Pr
Xϵ-min∼Dϵ-min

Xi fixed for i ̸=ϵ-min

[C(X1, X2, . . . , Xk) = f(X1, X2, . . . , Xk)] > 1 + ϵf

Since everything but ϵ−min is fixed this means that we have created a
circuit capable of computing fϵ−min with higher than ϵϵ−min accuracy.

3.1 Yao++ Lemma

As the actual formulation of our theorem is quite verbose, we shall split it
into a series of definitions that lead to the main body of the theorem.

We shall begin by naming the type of structure that can result from the
application of the IHCL++ theorem:

Definition 3.3 (Partitioned Hardcore Structure). Let X be a finite domain,
and F a family of Boolean functions f : X → {0, 1}. Let g : X → {0, 1} be
a function, and let P = {P1, P2, . . . , PN} be a partition of X such that for
each part Pi ∈ P, there exists a hardcore subset HPi

⊆ Pi of density 2BPi

such that grand is (F rand, ϵi)-hardcore over HPi
.

In order to better manipulate Partitioned Hardcore Structures, we wish
to define a simplified structure that represents the same object, however is
better tailored for our task:

Definition 3.4 (Simplified Partitioned Hardcore Structure). We define δi a
measure of the proportion of the total domain that lies in the hardcore set of
the ith component. Formally, we let δi = 2BPI

· |Pi|
|X| .

So that all δi add to 1, we create a virtual element that represents union
of the not hardcore sections of each component in the partition. Formally,
we let

ϵ0 =
1

2
δ0 = 1−

N∑
i=1

δi

Note that our Simplified Partitioned Hardcore Structure is merely a par-
tition of the domain such that each component has a specified hardcoreness.

11

The difference between this Simplified Hardcore Structure and the Parti-
tioned Hardcore Structure is that we aggregate all non-hardcore parts into
a single component and that we explicitly define the densities of the compo-
nents in relation to the total domain.

Definition 3.5 (Prefix Aggregate). For Simplified Partitioned Hardcore Struc-
ture let ϵ0, . . . , ϵN be ordered such that ϵi−1 ≥ ϵi. We define the prefix aggre-
gate:

δi =
i∑

j=0

δj

which represents the total mass of all components with hardcoreness at least
ϵi.

Theorem 3.6 (Yao++). For Simplified Partitioned Hardcore Structure let
ϵ0, . . . , ϵN be ordered such that ϵi−1 ≥ ϵi. Then the function g⊕k is ϵ⊕k-hard,
with

ϵ⊕k ≤
N∑
i=0

(
δi

k − δi−1
k
)
· ϵi

Proof. The above formula is obtained by sampling k elements and taking the
average of their maximum hardcoreness.

The Yao++ lemma can be easily derived by conditioning in what hardcore
set each sample falls in, and adding all of those hardcorenesses up by the
Lemma 3.1.

For a certain conditioning of samples we can compute the hardcoreness
of the scenario using Lemma 3.2.

3.2 Yao++ lemma cannot be improved by redistribu-
tion

For a given function f , there are several possible ways to partition it, each
partition provides a way to estimate the hardcoreness of f . Given that
different partitions can suggest different hardcoreness-es, we wish to prove
that we cannot improve the estimated hardcoreness of a function by creating
an artificial partition of the elements.

By artificial we mean a partition that is not constructed according to
some direct knowledge of f , but rather knowledge of another partition. It

12

is quite intuitive why a sound hardcoreness estimator should not increase by
artificial repartitioning, as the original partition has the highest degree of
information and any repartitioning either retains the initial information or
dilutes it.

Definition 3.7 (Repartition). Given a partition of a function f into com-
ponents with densities δ0, δ1, . . . , δn and hardcoreness values ϵ0, ϵ1, . . . , ϵn, a
repartition is a new partition with component densities δ′0, δ

′
1, . . . , δ

′
m and

hardcoreness values ϵ′0, ϵ
′
1, . . . , ϵ

′
m, such that the new components are obtained

as linear combinations of the original components.
Formally, there exists an n×m matrix A such that:

1. Each row of A sums to 1:

m∑
i=0

Aj,i = 1 for all j = 0, . . . , n.

2. The new densities are:

δ′i =
n∑

j=0

δjAj,i.

3. The new hardcoreness values are:

ϵ′i =
n∑

j=0

δjAj,i

δ′i
ϵj.

It is quite obvious that more complex repartitioning procedures can be
done by successive repartitioning steps. We claim that any repartitioning can
be decomposed into elementary steps that merely combine elements some of
the elements from two components into the elements of a new component.
This is equivalent to saying that any repartitioning matrix can be written as
the product of several repartitioning matrices where each matrix has most
diagonal elements equal to 1.

Thus, in order to prove that any repartitioning results in a less tight
bound, it is sufficient to prove that any elementary repartitioning results in
a less tight bound.

Let us consider such an elementary step that combines a proportion a
of elements from a component i with a proportion b of elements from a
component j. Without loss of generality, we assume that i < j:

13

δ′j ← δj − b

δ′i ← δi − a

δ′new = a+ b

ϵ′new =
a

a+ b
· ϵi +

b

a+ b
· ϵj

Let us a build a new partition described by δ′i and ϵ′i according to the
above operation. Let this new partition have hardcoreness ϵ′⊕k, we claim
that:

ϵ⊕k ≤ ϵ′⊕k

In order to prove the claim, let us first assume the opposite. That is:
ϵ⊕k > ϵ′⊕k.

Note that for k given samples, the different partitions often have the
same hardcoreness, only when the different partitions result in different com-
ponents for the samples we actually get different hardcorenesses . Let us
condition upon that fact.

We will be as pessimistic as possible and first condition on the fact that
we sampled k elements such that the element with minimum hardcoreness is
one of the elements from the new component. Let us assume that k2 of the
sampled elements are from the new component.

We will be even more pessimistic and assume that the second minimum
hardcoreness is worse than δa.

Then it becomes trivial to prove mathematically:

ϵnew ≥ ϵi ·
(

a

a+ b

)k

+ ϵj ·

(
1−

(
a

a+ b

)k
)

ϵi ·
a

a+ b
+ ϵj ·

b

a+ b
≥ ϵi ·

(
a

a+ b

)k2

+ ϵj ·

(
1−

(
a

a+ b

)k2
)

Which is clearly true as: ϵi ≥ ϵj. Note that for k2 = 1 we have equality,
but in that case it simply does not matter how we partition the elements

14

3.3 Why Stronger Yao Lemma implies the Weaker ver-
sion

Note that in order to recover IHCL from IHCL++, we ”glued” together
the hardcore components. This operation was merely a repartitioning of the
partition resulting from IHCL++. The previous section proves why any such
repartitioning will be weaker in terms of hardcoreness.

4 Conclusion and Future Directions

Putting everything together, we consider [CDV24]’s improvement of Impagli-
azzo’s hard core lemma to IHCL++ and following the proof of IHCL =⇒
Yao [GNW11], we get a result of the form IHCL++ =⇒ Yao++. This con-
clusively presents a new concrete application of the ++ approach outlined
in the paper as suggested in the final section of [CDV24]. Along with the
improvement in Yao’s result, we give a simple exposition for applications of
multicalibration in complexity.

Thus, our result presents a generalization of Yao’s fundamental result
through connections to the multicalibration theorem as done in [CDV24]. It
would be interesting to see if this generalization translates into applications
of Yao’s lemma and lead to concrete theoretical improvements.

A few possible next applications of the ++ approach as detailed in [CDV24]
are in leakage resilient cryptography [JP14, CCL18], Chang’s inequality in
Fourier analysis of boolean functions [IMR12], and weak notions of zero-
knowledge [CLP15]. This approach was also shown to be helpful in charac-
terizing the distinguishability of product distributions in [MPV25].

Furthermore, it would be interesting to explore if there are other unex-
plored connections in the areas of algorithmic fairness, complexity theory,
and cryptography.

5 Acknowledgements

We would like to thank the our group’s TA Katarina Cheng, as well as the
instructors Henry Corrigan-Gibbs and Yael Kalai for their help and sup-

15

port throughout this project. We would also like to thank Aaron (Louie)
Putterman for introducing us to the techniques used in the recent works on
complexity theory and multicalibration.

Team contributions

Since this work was theoretical, it is hard to divide the content of mathe-
matical work carried by the team members so we believe that all members
of the team contributed equally. Each section in the report and slides are
primarily due by the following team members:

• section 1 by Jaehyun,

• section 2 by John,

• section 3 by Alex,

• conclusion by Rohan, and

• the presentation slides by Alex.

16

References

[BM82] Manuel Blum and Silvio Micali. How to generate cryptograph-
ically strong sequences of pseudo random bits. In 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982),
pages 112–117, 1982.

[CCL18] Yi-Hsiu Chen, Kai-Min Chung, and Jyun-Jie Liao. On the com-
plexity of simulating auxiliary input. In Jesper Buus Nielsen
and Vincent Rijmen, editors, Advances in Cryptology – EURO-
CRYPT 2018, pages 371–390, Cham, 2018. Springer Interna-
tional Publishing.

[CDV24] Śılvia Casacuberta, Cynthia Dwork, and Salil Vadhan.
Complexity-theoretic implications of multicalibration. In Pro-
ceedings of the 56th Annual ACM Symposium on Theory of
Computing, pages 1071–1082, 2024.

[CLP15] Kai-Min Chung, Edward Lui, and Rafael Pass. From weak
to strong zero-knowledge and applications. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, Theory of Cryptography -
12th Theory of Cryptography Conference, TCC 2015, Warsaw,
Poland, March 23-25, 2015, Proceedings, Part I, volume 9014
of Lecture Notes in Computer Science, pages 66–92. Springer,
2015.

[GNW11] Oded Goldreich, Noam Nisan, and Avi Wigderson. On yao’s xor-
lemma. Studies in Complexity and Cryptography. Miscellanea on
the Interplay between Randomness and Computation: In Collab-
oration with Lidor Avigad, Mihir Bellare, Zvika Brakerski, Shafi
Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam
Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan,
Avi Wigderson, David Zuckerman, pages 273–301, 2011.

[HJKRR18] Ursula Hébert-Johnson, Michael Kim, Omer Reingold, and
Guy Rothblum. Multicalibration: Calibration for the
(computationally-identifiable) masses. In International Confer-
ence on Machine Learning, pages 1939–1948. PMLR, 2018.

17

[Hol05] Thomas Holenstein. Key agreement from weak bit agreement.
In Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing, pages 664–673, 2005.

[Imp95] Russell Impagliazzo. Hard-core distributions for somewhat hard
problems. In Proceedings of IEEE 36th Annual Foundations of
Computer Science, pages 538–545. IEEE, 1995.

[IMR12] Russell Impagliazzo, Cristopher Moore, and Alexander Russell.
An entropic proof of chang’s inequality. CoRR, abs/1205.0263,
2012.

[JP14] Dimitar Jetchev and Krzysztof Pietrzak. How to fake auxiliary
input. In Theory of Cryptography Conference, pages 566–590.
Springer, 2014.

[MPV25] Cassandra Marcussen, Aaron L. Putterman, and Salil Vadhan.
Characterizing the distinguishability of product distributions
through multicalibration. arXiv preprint arXiv:2412.03562,
2025. Version 2, February 25, 2025.

[TTV09] Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Regularity,
boosting, and efficiently simulating every high-entropy distribu-
tion. In 2009 24th Annual IEEE Conference on Computational
Complexity, pages 126–136, 2009.

[Yao82] Andrew C Yao. Theory and application of trapdoor functions. In
23rd Annual Symposium on Foundations of Computer Science
(SFCS 1982), pages 80–91. IEEE, 1982.

18

	Introduction
	Yao's XOR Lemma
	Applications in Cryptography
	IHCL
	Our contributions

	Recent Progress (Multicalibration + Complexity)
	New Method to get IHCL
	Proof that IHCL++ implies IHCL

	Version of Yao without assumptions
	Yao++ Lemma
	Yao++ lemma cannot be improved by redistribution
	Why Stronger Yao Lemma implies the Weaker version

	Conclusion and Future Directions
	Acknowledgements

