
Threshold voting protocol

Vlada Petrusenko, Liza Horokh, Pranjal Srivastava, Nyx Theos Haile

May 13, 2025

Abstract

In this paper, we describe a secure threshold voting protocol. Our
protocol only reveals whether the candidate got a threshold k number of
votes, without revealing an exact number of votes and preserving voters’
anonymity. As a first step, we authorize all the users as valid ones by a
decentralized endorsement system, which prevents parties to generate a
lot of fake identities. In further steps, we assume that adversaries are hon-
est, but curious, and at least two voters are not malicious. The described
algorithm is secure under the DDH assumption against a poly-time adver-
sary. The protocol does not require communication between voters, but
assumes the existence of a public server and authorized access to data on
it. Complexity of voting protocol is O(n2 · k), where n is the number of
voters and k is the threshold. Complexity is comparable to the alternative
schemes like BGW, but does not require pairwise communication.

1 Introduction

Electronic voting has gotten more common in various settings - from decentral-
ized blockchain applications (e.g. DAO - Decentralized Autonomous Organi-
zation), to national elections. This popularity of electronic voting applications
dictates a set of accuracy, security and privacy expectations. While a balance
between them is often a tradeoff [2], both are immensely important in the con-
text of elections.
The goal of this project is to design a protocol that would provide a layer of
anonymity while being able to successfully determine the result of the election.
More specifically, this project shows a protocol, that given some threshold k re-
turns solely the information about whether the candidate got more or less than
k votes, without revealing the actual number. This is useful in context when one
wants to provide privacy to the candidates and only reveal the purpose of the
elections - who is the winner - not what the vote difference was. Additionally,
this scheme leaks absolutely no information about the voters’ choice, which is an
important consideration, that guarantees the voters that their vote will not be
used against them. To reiterate, our protocol achieves fairness of the election,
while maintaining anonymity objectives.

1

Figure 1: Steps of the protocol

As per our construction, we assume parties which are honest but curious, how-
ever, could generate fake accounts. We show how to filter out fake accounts in
the Decentralized Authentication step, and afterwards - how to compute Thresh-
old Voting result without pairwise communication. This construction is secure
under the Decisional Diffie-Hellman (DDH) assumption against a polynomial-
time adversary.

Our protocol can be roughly split into four stages (see Figure 1).

• As a stage 0, we need to authorize voters which have real identities. This
includes assuming that there isn’t a trusted authentication authority, and
identifying parties that are generating fake identities.

• For stage 1, we assume that all remaining participants are honest but curi-
ous, and initialize a voting table. The table looks random to an arbitrary
observer and encodes initial state of voting. It is hosted on a public server
that is trusted to host encrypted data.

• For stage 2, each voter updates the table independently. Two voters can-
not vote at the same time, and there is a public track of table history
(which doesn’t reveal any information about who voted for what). Each

2

voter can either do operation ”Vote(T)” or ”Not Vote(T)” and updated
table looks indistinguishable to any observer.

• For the last stage, all voters collaborate to decrypt the resulting value.
That being said, they don’t need to communicate to each other, they just
have to decrypt their shares and post them publicly.

The remainder of this paper expands on the specifics of implementation of
each of these steps, along with security analysis and performance evaluation.

2 Background and Prior Work

2.1 ElGamal

ElGamal protocol is an asymmetric encryption algorithm that secures messages
using a public-private key pair and randomness, making it hard to decrypt
without the private key. It relies on the difficulty of the discrete logarithm
problem for security.[1]

2.2 BGW

A protocol used to carry out multiparty computations. We have used it as a
basic comparison for our scheme as it is the most used multiparty computation
scheme. Additive shares provide the same complexity.

2.3 Additive Shares

In multi-party-communication, we say that n people hold an additive share of
some value v if they each have some personal value (usually secret), such that
the sum of values is v.

2.4 LHE

A linearly holomorphic encryption scheme is one where one can perform linear
operations on ciphertexts. For our purposes, we chose pseudo-encryption with
linear properties, but for improving security against quantum adversaries, we
can base our security on the linear property of LWE public key encryption
schemes. It might decrease performance because of the range cipher text size,
but would improve the hardness of the assumption.

2.5 Min-node cut

The minimum node cut of a graph is the smallest set of nodes whose removal
disconnects the graph. In cryptographic protocols or network security contexts,
this concept helps analyze communication bottlenecks or adversarial resilience.
The NetworkX library provides an implementation of this algorithm, useful for

3

evaluating connectivity properties in graph-based models of distributed proto-
cols. [3]
This is a useful idea that we are using for the authentication step of the algo-
rithm.

4

3 Authentication Protocol
Probabilistic Trust Propagation under Adversarial

Mislabeling in Sparse Random Graphs

Introduction

To address the challenge of distributed voting we must first address the challenge
of distributed authentication over a permissionless network. In this setting, hon-
est parties must discover all other honest parties, prune out malicious parties,
and reach a consensus on the final honest set. We assume that the adversaries
are computationally bounded, but they have the ability to generate false iden-
tities (minions), and forge connection tests.
Our approach utilises properties of sparse random graphs along with a proba-
bilistic (potentially zero-knowledge) verification function triplet to label edges
and propagate along trust paths. We show that in O(log n) rounds with O(log n)
pairwise communication, honest parties converge w.h.p., on the honest core
when the adversary controls up to 1− 1/2c nodes.

3.1 Definitions and assumptions

We assume the existence of some verification function triple

C(j) → ρ, R(j, ρ) → r, V (j, ρ, r) → {0, 1}

such that given two voters i and j, i issues a challenge to j, and

Pr[V (j, ρ,R(j, C(j))) = 1] = 1

when j is honest (irrespective of i) and

Pr[V (j, ρ,R(j, C(j))) = 1] = ε

when j is is not a legitimate party. No repetition is possible, the result of a
connection test on i, j is constant.
We refer to this function triple as a connection test.
Each voter has the ability to sign and verify signed messages with a known
public/private keypair.
We model the voters as a graph, where nodes represent voters and each edge
represents a connection attempt between two voters.
Finally, we define two kinds of adversaries:

• Impostors are malicious privileged actors. They can perform valid au-
thentications under C,R, V and are indistinguishable from honest actors
by any isolated test. Impostors are allowed to perform any actions mali-
ciously at any time.

5

• Minions are malicious nodes created by impostors. Unlike adversaries,
they do not have valid keys, and thus only pass the verification with prob-
ability ε. Among other minions, they may fail or pass at their discretion.
They also have the freedom to perform any actions maliciously, such as
dropping messages or falsely accusing any other nodes.

3.2 Minion Detection via Accusation Voting

The protocol proceeds in asynchronous rounds, which we model as an interval
over which every honest node performs a constant number of actions. As such, it
is round-agnostic, but we use the round as measure of progress. In each round,
every honest node i performs the following actions:

1. i samples c log n nodes from the network (without replacement). This
sampling takes place over the protocol, so nodes will not be replaced even
between rounds.

2. For each chosen j, i initiates the connection test and sets the result to be
wij Similarly, j performs the same test with i. Thus, each contact yields
a potentially asymmetric verdict for both endpoints.

3. i broadcasts a signed copy of wij and their connection status.

Over the rounds, i collects enough information to identify whether there exists at
least one node-disjoint trusted-path from i to j. Any node j for which Ti(j) = 0
is declared untrusted, otherwise j is temporarily trusted.
Among the trusted set, honest nodes are a connected component. However,
since minions cannot pass tests on any honest-honest link, all true honest nodes
are mutually reachable by trusted paths. Any impostor must be isolated from
this component on at least one cut, due to false accusations, and thus they will
be untrusted by some honest node. By exchanging connected-component labels,
the honest nodes reach consensus on the honest core.

3.3 Security

When the adversary controls at most 1− 1
2c nodes, where c is the parameter used

in node sampling, honest nodes will still have at least one disjoint honest-only
path to each other. Since wij is locally determined by the connection test and
verified by signatures, no node can falsify a testimony from another node.
Impostors, even if they pass all tests on some edges, cannot cross every cut in
the honest component, so they eventually fail Ti(j) = 1.

3.4 Runtime

Both the full graph and the honest subgraph are Erdős–Rényi graphs. The full
graph has average degree Θ(log n), diameter O(logn

log logn) w.h.p., and Θ(log n)
edge-disjoint path between random pairs.

6

Thus, w.h.p., the discovery phase propagates through the graph in O(log n)
rounds.

3.5 Future Work

We hope to present a formalised version of this work in the future :P

7

4 Formal objectives of the voting protocol

The scheme consists of an algorithm

• Let’s say that total number of voters is n and threshold is k, λ is a security
parameter

• Sv(λ) → (si, pki)
generator of the voters’ public/secret keys pair, run by voters individually

• S(λ, n, k) → A
protocol to each party to generate the part of the public table and combine
them

• Inc(A) → A′

protocol that increments the total number of votes

• Rand(A) → A′

protocol that re-randomizes the table without changing the number of
votes

• Eval(A) → {0, 1}
protocol for each player to decrypt part of the table and combine them to
return 1 ⇐⇒ # of votes ≥ k

4.1 Correctness

Eval(V) = 1 ⇐⇒ candidate C received ≥ k votes.

4.2 Security

• mask mal = (m1, . . .mn) : mi = 1 ⇐⇒ voter i is malicious

• va = (va1 . . . v
a
n), v

a
i = 1 ⇐⇒ voter i voted for the candidate and∑n

i=1 v
a
i = a

• I(vx) is all the information available to malicious parties

• Then I(va) ∼= I(vb),∀va, vb : a, b < k and va ∨mal = vb ∨mal

• Optional: I(va) ∼= I(vb),∀va, vb : a, b ≥ k and va ∨mal = vb ∨mal

4.3 Security assumptions

Decisional Diffie–Hellman (DDH), polynomial time honest, but curious adver-
sary, at least two honest voters.

8

5 Voting Protocol

5.1 Setup

To construct the voting protocol, we use chosen fixed threshold k and public
parameters p, g, such that p is a large prime number and g is a root element
from Zp. To guarantee perfect correctness and simplify some calculations, we
will choose p = 2 · q + 1 for some other large prime q.
Additionally, we define a polynomial T, such that:

T0(x) = r · x(x− 1)...(x− k + 1)

for some randomness r. If we want to reveal a number of votes above the
threshold, set r = 1. Steps that are required to hide a number of votes above
the threshold will be marked as Op.
And for 0 < i ≤ k, T is defined recursively as

Ti(x) = Ti−1(x+ 1)− Ti−1(x) (1)

Note that T0(x) = 0 if 0 ≤ x < k and T0 ̸= 0 otherwise.

5.2 Initialization

5.2.1 Generating shares, Sv(λ)

Let’s generate each voters’ private and public key pair as following:
Sv(λ) = (sk, pk), where sk is a randomly chosen number 1 ≤ sk ≤ p − 2 and
pk = gsk mod p.

Those keys will be used for the pseudo-encryption scheme

Enc(sk,m) = gm·sk mod p

Dec(sk, c = gsk·m) = c
p
sk mod (p−1) mod p = gm mod p

Let’s notice that our pseudo-encryption scheme has following properties:

Enc(sk,m1 +m2) = Enc(sk,m1) · Enc(sk,m2) mod p (2)

Enc(sk, c ·m1) = Enc(sk,m1)
c mod p (3)

Enc(sk,m1 −m2) = Enc(sk,m1) · Enc(sk,m2)
p−2 mod p (4)

5.2.2 Combining shares, S(λ, n, k)

To initialize voting for n voters, each uses their secret key ski to encrypt starting
shares Bi,j = 1

nTj(0) for j = 0 . . . k. Each party then posts their encrypted

9

shares to public server to form a public table A:

A =

Enc(sk1,

1
nT0(0)) Enc(sk1,

1
nT1(0)) . . . Enc(sk1,

1
nTk(0))

Enc(sk2,
1
nT0(0)) Enc(sk2,

1
nT1(0)) . . . Enc(sk2,

1
nTk(0))

...
...

. . .
...

Enc(skn,
1
nT0(0)) Enc(skn,

1
nT1(0)) . . . Enc(skn,

1
nTk(0))

 =

=

gsk1· 1

nT0(0) gsk1· 1
nT1(0) . . . gsk1· 1

nTk(0)

gsk2· 1
nT0(0) gsk2· 1

nT1(0) . . . gsk2· 1
nTk(0)

...
...

. . .
...

gskn· 1
nT0(0) gskn· 1

nT1(0) . . . gskn· 1
nTk(0)

Every column i represents Ti(cur num votes), and since initially there were 0
votes, during initialization it represents Ti(0).

Then, at any point of the voting process A stores encoded values of Tj(x =
current number of votes) as follows:

A =
[
Encoding(T0(x)), ..., Encoding(Tk(x))

]
=

gsk1·B1,0 gsk1·B1,1 . . . gsk1·B1,k

gsk2·B2,0 gsk2·B2,1 . . . gsk2·B2,k

...
...

. . .
...

gskn·Bn,0 gskn·Bn,1 . . . gskn·Bn,k

such that

∑n
i=1 Bi,j = Tj(x).

5.3 Voting process

When the person wants to vote, they go one of the two trajectories, depending
on whether they want to vote for or against.
If they want to vote for, they transform the table A → Rand(Inc(A)), and if
they want to vote against, they transform the table A → Rand(A). Increment
keeps track of the correct vote count, and Re-randomization ensures that nobody
can know what was the vote - it looks random and completely indistinguishable
to any other party.

5.4 Incrementing the vote, Inc(A)

Inc(A) protocol: if the previous number of votes is v, modify table A such that it
represents Tj(v+1). To do that, we notice that by recursive property 1 to update
value Tj we can calculate: Tj(v + 1) = Tj(v) + Tj+1(v) (let us notice that Tk is
constant and does not need to be updated). Using 2 of the pseudo-encryption
used, we can get A′

i,j = Enc(ski, B
′
i,j) = Ai,j+1 ·Ai,j . The property of the shares

is still preserved since
∑

i B
′
i,j =

∑
i Bi,j+Bi,j+1 = Tj(v)+Tj+1(v) = Tj(v+1).

10

To summarize:

A′ =

A1,0 ·A1,1 A1,1 ·A1,2 . . . A1,k

A2,0 ·A2,1 A2,1 ·A2,2 . . . A2,k

...
...

. . .
...

An,0 ·An,1 An,1 ·An,2 . . . An,k

=

gsk1(B1,0+B1,1) gsk1(B1,1+B1,2) . . . gsk1B1,k

gsk2(B2,0+B2,1) gsk2(B2,1+B2,2) . . . gsk2B2,k

...
...

. . .
...

gskn(Bn,0+Bn,1) gskn(Bn,1+Bn,2) ... gsknBn,k

Note that any voter doesn’t know the current vote count v, but knows that
combining columns would increment the vote count by exactly 1.

5.5 Re-randomization, Rand(A)

Then, regardless of whether the user chose to increment the vote or not, they
need to re-randomize the table after voting to hide the voting process. Assuming
that the state of the table is:

A =

Enc(sk1, B1,0) Enc(sk1, B1,1) . . . Enc(sk1, B1,k)
Enc(sk2, B2,0) Enc(sk2, B2,1) . . . Enc(sk2, B2,k)

...
...

. . .
...

Enc(skn, Bn,0) Enc(skn, Bn,1) . . . Enc(skn, Bn,k)

Generate random values ci,j , i = 1 . . . n, j = 0 . . . k such that

∑n
i=1 ci,j = 0.

Let’s notice that the only requirement for A being a valid encoding of T is
that the sum of the shares Bi,j in the column equals the corresponding value
of the required polynomial. This means that if (Bi,j , i = 1 . . . n, j = 0 . . . k)
is valid set of shares, then set (Bi,j + ci,j , i = 1 . . . n, j = 0 . . . k) is also a
valid representation. This means that we can re-randomize the table using
property 3 of our encryption scheme, since pki = Enc(ski, 1) we can gen-
erate Enc(ski, ci,j) = pk

ci,j
i and then using property 2 update share A′

i,j =

Enc(ski, Bi,j + ci,j) = Enc(ski, Bi,j) · Enc(ski, ci,j) = Ai,j · pkci,ji . So after
re-randomization we will obtain matrix A′:

A′ =

A1,0 · pk

c1,0
1 A1,1 · pk

c1,1
1 . . . A1,k · pkc1,k1

A2,0 · pk
c2,0
2 A2,1 · pk

c2,1
2 . . . A2,k · pkc2,k2

...
...

. . .
...

An,0 · pk
cn,0
n An,1 · pk

cn,1
n . . . An,k · pkcn,k

n

=

gsk1(B1,0+c1,0) gsk1(B1,1+c1,1) . . . gsk1(B1,k+c1,k)

gsk2(B2,0+c2,0) gsk2(B2,1+c2,1) . . . gsk2(B2,k+c2,k)

...
...

. . .
...

gskn(Bn,0+cn,0) gskn(Bn,1+cn,1) . . . gskn(Bn,k+cn,k)

11

Op: if we want to provide an optional security guarantee 4.2, on the random-
ization step, each voter chooses a random number r and multiplies all values in
the table by r using property 3 of pseudo-encryption. Then the table would be
encoding of r ·T0(v), r ·T1(v) . . . r ·Tk(v). This does not change the Inc function
property and decryption of results. By introducing randomness, we ensure that
T (v) does not reveal v for v ≥ k.

5.6 Calculating the result of voting, Eval(A)

Let’s notice that after each person submitted their vote and re-randomize the
table, if total number of votes for candidate is v, then the final state of the table
is:

A = [Encoding(T0(v)), Encoding(T1(v)), . . . Encoding(Tk(v))]

=

Enc(sk1, B1,0) Enc(sk1, B1,1) . . . Enc(sk1, B1,k)
Enc(sk2, B2,0) Enc(sk2, B2,1) . . . Enc(sk2, B2,k)

...
...

. . .
...

Enc(skn, Bn,0) Enc(skn, Bn,1) . . . Enc(skn, Bn,k)

such that

∑n
i=1 Bi,0 = T0(v). So to get the result of the voting, each voter i

publishes share equal to preudo-decryption 5.2.1 of Ai,0 si = Dec(ski, Ai,0) =
Dec(ski, Enc(ski, Bi,0)) = gBi,0 .
After we got share of each voter, we calculate r =

∏n
i=1 si = g

∑n
i=1 Bi,0 = gT0(v).

By construction of 5.1 p, g and T0, T0(v) does not have divisors greater than v,
so T0(v) ̸= 0 → p − 1 = 2 · q ∤ T0(v) → r = 1 ⇐⇒ T0(v) = 0 ⇐⇒ v < k, so
result of Eval(A) is r == 1?.

6 Analysis and Evaluation

6.1 Security

We will first prove security guarantees in the setting where the adversary which
controls t ≤ n − 2 honest-but-curious parties is computationally bounded and
cannot solve discrete-log type problems. We will then describe how the algo-
rithm can be tweaked such that the protocol is secure even if the adversary has
access to a quantum computer. We will also achieve security with abort if the
adversarial parties are malicious and do not respond as per protocol.

6.1.1 Honest-But-Curious non-quantum adversary

The first key idea behind the proof is that to an t < n − 1 collaborating par-
ties, a column in table A looks computationally indistinguishable from random
conditioned on Decisional-Diffie-Hellman and hence leaks no information. The
other key idea is any two columns (either in the same table or across tables)
look independent of each other due to the re-randomization step. This means
that even with access to all data, t < n−2 parties will not gain any information

12

about the voting process.

We now formalize both of these steps. We will first show that to t < n − 2
parties, a column looks indistinguishable from random. For convenience, we
provide a few definitions before formalizing what this means.

For any choice of secrets sk = (sk1, · · · , skn), let

exp-enc(sk) := (gsk1 , · · · , gskn)

For some choice of secrets sk and column C =
[
gsk1b1 , · · · , gsknbn

]
, we define

rep(C) = b1 + · · ·+ bn.

Informally rep(sk, C) is the value the entire column encrypts. Define D to be
the uniform distribution over all possible pairs (exp-enc(sk), C), and let Di be
the uniform distribution over pairs (exp-enc(sk), C) such that rep(sk, C) = i.
Our claim is that even with an oracle which responds with t different elements

of sk, we have Db

c∼= D.

Assume for the sake of contradiction that this is false. Since additional oracle
access cannot harm the adversary, assume that the adversary gains access to all
of the last n− 2 elements of sk. We need to show that

Unif({(gsk1 , gsk2), [gsk1b1 , gsk2b2] | b1+b2 = b})
c∼= Unif({(gsk1 , gsk2), [gsk1b1 , gsk2b2]})

The result for b = 0 will imply the result for all b as the adversary can
multiply gsk2b2 by g−sk2b to reduce the general case to the special case b = 0.
However, the special case for b = 0 requires the adversary to ascertain with
non-negligible advantage over random whether some tuple (ga, gb, gc, gd) sat-
isfies ad = bc which is known to be equivalent to Differential-Diffie-Hellman
(DDH). This concludes the proof of the first key-idea, that a column does not
leak any information about the value it encrypts.

We now show the second key idea, that any two revealed columns are mostly
independent. More formally, we show that for any column C in column A,
such that rep(sk, C) = e, C is uniformly distributed among columns such that
rep(sk, C) = e. The reason behind this is due to the re-randomization step.
The values (B1,j , B2,j , · · · , Bn,j) are an additive share of

∑
i Bi,j . We know

that when a uniformly random additive share of 0 is added to any given ad-
ditive share, the additive share gets randomized. Thus, after re-randomization
step, the column is randomized.

We now prove a corollary that will help us finish. Consider l = poly(n) and
tuple (e1, · · · , el) ∈ F l

p. For brevity, let ske = exp-enc(sk). We claim

Unif({ske, C1, C2, . . . , Cl} | ∀i, rep(ske, Ci) = ei)
c∼= Unif({ske, C1, C2, . . . , Cl})

13

This corollary follows from a standard hybrid argument, but for completeness
we quickly outline a proof. Consider the intermediate distributions El′ =
Unif({ske, C1, C2, . . . , Cl} | ∀i < l′, rep(sk, Ci) = ei By the triangle inequal-
ity, that the adversarial advantage between the distributions E0 and El in our
corollary is at most l times the maximum adversarial advantage between El′ and

El′+1. FromDel′+1

c∼= D, we can show the adverary gains at most poly(n)negl(n)
advantage between E0 and El, or that the two distributions are computationally
equivalent.

Finally we show that for any possible set of votes by non-adversarial parties
which would result in the same value of T0(#total votes), the adversary cannot
distinguish the view it observes from any other set of votes by non-adversarial
parties. Suppose for contradiction that the adversary could do so. Suppose
these two sets of votes are v1, . . . , vn and w1, . . . , wn. Let v′i and w′

i represent
the partial sums v1 + · · · + vi and w1 + · · · + wi. The adversary can appar-
ently with non-negligible advantage distinguish between a set of nk uniformly
random columns representing Ti(v

′
j) and a set of nk uniformly random columns

representing the Ti(w
′
j). However, this is a direct contradiction to our corollary!

This proves that apart from the value of T0(#total votes) which is revealed
at the end. No other information is revealed as desired.

6.1.2 Quantum Adversaries

The protocol as specified is not secure against quantum adversaries, as quantum
adversaries are capable of solving discrete-log and DDH. However the key idea
is that instead of using Enc(ski, bi) = gskibi , we can use any other linearly
homomorphic encryption scheme for which DDH is quantum-secure.

6.1.3 Malicious Parties

We also outline how the protocol can be modified to achieve security against ma-
licious parties whose communication does not follow the protocol. For this, we
require that each apart from communicating the new value of table A′ given ta-
ble A, each party also provide a zero-knowledge proof that either A′ ∈ Rand(A)
or A′ ∈ Inc(Rand(A)). One downside of this approach, however, is that the
addition of zero-knowledge proofs decreases the speed by a large constant factor.

6.2 Complexity and Comparision with BGW

Note that our voting protocol essentially is a MPC to compute the function

f(v1, . . . , vn) =

{
0 if

∑
vi < k

1 if
∑

vi ≥ k

We know that the BGW algorithm provides one way to compute the above
function. We compare the performance of our algorithm against BGW in terms
of security as well as time and communication complexity.

14

6.2.1 Security

The BGW algorithm provides statistical security. Even a computationally un-
bounded adversary is unable to gain information about the actions of other par-
ties. In contrast, our algorithm only functions against computationally bounded
adversaries. However, this is a reasonable safety assumption in practice.

The main security advantage of our algorithm is that it is secure against
n−2 colluding parties, whereas BGW is only safe against n/2 honest-but-curious
colluding parties, and n/3 malicious colluding parties.

6.2.2 Time and Communication Complexity

For simplicity, we consider operations in Fp as taking O(1) time and elements of
Fp as taking O(1) space. This keeps the comparision fair, as both our algorithm
and BGW rely on computations done in Fp. The smallest circuit that can
compute whether the sum of votes is at most k seems to require at least k AND
gates. The simplest BGW circuit we could find which calculates this function
uses k AND gates. While circuit lower bounds are hard to prove, there does not
seem to be any quicker approach. This means that BGW computation of the
fucntion f will have total time and communication complexity of O(nωk) and
O(n2k) each respectively, where ω is the matrix-multiplication constant.

Our algorithm requires n consecutive steps, each with O(nk) operations, so
our algorithm has a total time and communication complexity of O(n2k) re-
spectively. Thus, in terms of raw computation power required, our algorithm
slightly out-performs BGW.

Another important comparision is that our algorithm does not require pair-
wise communication between voters, whereas BGW requires secure pairwise
communication between each pair of voters for each AND gate.

6.2.3 Summary

We present a quick summary of the comparision across security and complexity..

BGW our scheme
Communication Cost O(n2k) O(n2k)
Time-Complexity O(nωk) O(n2k)

Pairwise Communication Needed Not needed
Power of Adversary unbounded poly-time
#Colluding parties n/2 n− 2

15

7 More Application and Future Work

7.1 Approve/Reject/No opinion

Another use of our scheme is a voting protocol, where we can vote for the can-
didate, vote against the candidate or abstain. We want to check whether the
candidate got more approval votes than rejection. To make this vote, we can use
different starting polynomial T0(x) = (x+1) . . . (x+ n), where n is the number
of voters. The main property of this polynomial is T0(x) = 0 ⇐⇒ x < 0. Then
we construct the same recursive polynomials Ti(x) = Ti−1(x + 1) − Ti−1(x)
and table as in the setup section 5.1. Voting protocol would be applying
Inc(A), Dec(A), Rand(A), where Inc,Rand are the same operations described
in the voting section 5.3. The voter applies Inc if they want to support the
candidate, and Decr if they want to reject the candidate. In the end, they
apply Rand function. Then at any point of the vote our table would encode
T (current vote support− current vote against).

7.1.1 Rejecting the candidate Decr(A)

To implement decrementing polynomials Ti, we notice that Tn is a constant. By
the recursive property 1 we can notice that Ti(x− 1) = Ti(x)− Ti+1(x− 1). So
to get new table A′ we start from j = n of the table and go to j = 0 using linear
property of our encryption, update each entry to be A′

i,j = Ai,j −A′
i,j+1, A

′
i,n =

Ai,n.

A′ =

A1,0 · (A′

1,1)
p−2 A1,1 · (A′

1,2)
p−2 . . . A′

1,n = A1,n

A2,0 · (A′
2,1)

p−2 A2,1 · (A′
2,2)

p−2 . . . A′
2,n = A2,n

...
...

. . .
...

An,0 · (A′
n,1)

p−2 An,1 · (A′
n,2)

p−2 . . . A′
n,n = An,n

=

gsk1(B1,0−B′

1,1) gsk1(B1,1−B′
1,2) . . . gsk1B1,n

gsk2(B2,0−B′
2,1) gsk2(B2,1−B′

2,2) . . . gsk2B2,n

...
...

. . .
...

gskn(Bn,0−B′
n,1) gskn(Bn,1−B′

n,2) ... gsknBn,n

So if A = [Encoding(T0(v)), Encoding(T1(v)) . . . Encoding(Tn(v))], then A′ =
[Encoding(T0(v − 1)), Encoding(T1(v − 1)) . . . Encoding(Tn(v − 1))]

7.1.2 Summary

S, Sv, Eval algorithms are the same as in threshold voting.
The complexity of this voting scheme is equivalent to the threshold voting for
k = n,O(n3) and the security proofs and guarantees are the same. Because the
threshold is O(n) and the number of voters is expected to be large, the scheme

16

provides much worse complexity than the equivalent BGW but does not require
voters to communicate with each other and protect against larger number of
malicious parties.

7.2 Winning candidate

Another use of this scheme is to determine the winning candidate (or the ranking
of candidates), without revealing the number of votes they got. More formally,
we have k candidates and each person wants to vote for one of them. Winning
candidate is the one which got mot votes. To implement this voting, we will use
previous scheme to approve/reject/no opinion (ARN) voting. We will come up
with the table of ARN voting tables

W =

0 A1,2 . . . A1,k

A2,1 0 . . . A2,k

...
...

. . .
...

Ak,1 Ak,2 . . . 0

Where Ai,j is a ARN voting table to determine whether candidate i got more
votes than candidate j. Each voter uses the same pair of private keys to encrypt
their share. Each table stores encoding of difference of votes for candidate i and
j. Then to vote for the candidate i, voter apply Inc(Ai,j), Decr(Aj,i),∀0 ≤
j ≤ k. Let’s notice that table Ai,j would encode 0 ⇐⇒ i lost voting to
j. This means that if we sum the tables (apply property 2 for each pair of
corresponding entries) and then decrypt first columns of the sum, it would be
equal to 0 ⇐⇒ person won against all other candidates (or if acidentally∑k

j=1 T
i,j
0 (#votes for i−#votes for i) = 0, but this happens with neglidgible

probability). So

k∑
j=1

A0,j =

∏k

j=1 Enc(sk1, B
i,j
1,0)

∏k
j=1 Enc(sk1, B

i,j
1,1) . . .

∏k
j=1 Enc(sk1, B

i,j
1,n)∏k

j=1 Enc(sk2, B
i,j
2,0)

∏k
j=1 Enc(sk2, B

i,j
2,1) . . .

∏k
j=1 Enc(sk2, B

i,j
2,n)

...
...

. . .
...∏k

j=1 Enc(skn, B
i,j
n,0)

∏k
j=1 Enc(skn, B

i,j
n,1) . . .

∏k
j=1 Enc(skn, B

i,j
n,n)

=

Enc(sk1,

∑k
j=1 B

i,j
1,0) Enc(sk1,

∑k
j=1 B

i,j
1,1) . . . Enc(sk1,

∑k
j=1 B

i,j
1,n)

Enc(sk2,
∑k

j=1 B
i,j
2,0) Enc(sk2,

∑k
j=1 B

i,j
2,1) . . . Enc(sk2,

∑k
j=1 B

i,j
2,n)

...
...

. . .
...

Enc(skn,
∑k

j=1 B
i,j
n,0) Enc(skn,

∑k
j=1 B

i,j
n,1) . . . Enc(skn,

∑k
j=1 B

i,j
n,n)

= [Encoding(

k∑
j=1

T i,j
0), Encoding(

k∑
j=1

T i,j
1), . . . Encoding(

k∑
j=1

T i,j
n)]

If we want to get full ranking, we can run Eval on each Ai,j to get pairwise
comparison. Whole algorithm runs in O(n3k2), because we use k2 treshold

17

voting with treshold n. For BGW we would need to find maximum (or sort the
array for full ranking) which would require O(n2polylog(k)k) operations.

7.3 Future work

In this project we proposed alternative ways to evaluate non-linear max func-
tions on combined secret inputs using only linear operations. This approach
reduces complexity of multi-party computation and eliminates the need in FHE
or pairwise communication. Future work might involve exploring other po-
tentially useful functions which could be computed using polynomials (some
examples include finding whether number belongs to fixed set) and expanding
possible size of each share (by constructing different recursive polynomials we
can allow Inc(m) operation, which increments current encoded polynomial by
any m instead of 1).
Another direction to work towards is reducing size of Encoding(T). While
currently we require each person to encode their share separately, we can try
to come up with combined encryption of one share Enc(sk1, sk2, . . . skn, T0).
One possible way to do so, is to divide our input into 3 shares B0,i, B1,i, B2,i :
B0,i +B1,i +B2,i = Ti(v). Then instead of each person having their own public
key, we simulate encryption using uniform secret key SK = (SK0, SK1, SK2) =
(
∏n

i=1 sk0,i,
∏n

i=1 sk1,i,
∏n

i=1 sk2,i). To do so, we can notice that

Enc(sk1 · sk2,m) = Enc(sk1,m)sk2 (5)

if(sk1, pk1)is a valid pair → (sk1 · sk2, pksk2
1) is also valid pair (6)

Dec(sk1 · sk2, c) = Dec(sk1, c)
p

sk2
mod p−1 (7)

This means that each voter can apply their own encryption “on top” of previous
one after voting. In addition to maintaining the table, we will simulate shared
public key PK = (PK0 = g

∏n
i=1 sk0,i , PK1 = g

∏n
i=1 sk1,i , PK2 = g

∏n
i=1 sk2,i).

Idea is that after m people voted, table would look like

A =

Enc(
∏m

i=1 sk0,i, B0,0) Enc(
∏m

i=1 sk0,i, B0,1) . . . Enc(
∏m

i=1 sk0,i, B0,k)
Enc(

∏m
i=1 sk1,i, B1,0) Enc(

∏m
i=1 sk1,i, B1,1) . . . Enc(

∏m
i=1 sk1,i, B1,k)

Enc(
∏m

i=1 sk2,i, B2,0) Enc(
∏m

i=1 sk2,i, B2,1) . . . Enc(
∏m

i=1 sk2,i, B2,k)

=

g(
∏m

i=1 sk0,i)·B0,0 g(
∏m

i=1 sk0,i)·B0,1 . . . g(
∏m

i=1 sk0,i)·B0,k

g(
∏m

i=1 sk1,i)·B1,0 g(
∏m

i=1 sk1,i)·B1,1 . . . g(
∏m

i=1 sk1,i)·B1,k

g(
∏m

i=1 sk2,i)·B2,0 g(
∏m

i=1 sk2,i)·B2,1 . . . g(
∏m

i=1 sk2,i)·B2,k

PK = [g

∏m
i=1 sk0,i , g

∏m
i=1 sk1,i , g

∏m
i=1 sk2,i]

Inc function can be run the same way as described in the 5.3 section. During
re-randomization step, after adding shares, we can update the table by adding

18

our secret key by applying properties 5, 6. More formally:

Rand(A) =

(A0,0 · PK
c0,0
0)sk0,m+1 (A0,1 · PK

c0,1
0)sk0,m+1 . . . (A0,k · PK

c0,k
0)sk0,m+1

(A1,0 · PK
c1,0
1)sk1,m+1 (A1,1 · PK

c1,1
1)sk1,m+1 . . . (A0,k · PK

c1,k
1)sk0,m+1

(A2,0 · PK
c2,0
2)sk2,m+1 (A2,1 · PK

c2,1
2)sk2,m+1 . . . (A2,k · PK

c2,k
2)sk2,m+1

=

Enc(
∏m+1

i=1 sk0,i, B
′
0,0) Enc(

∏m+1
i=1 sk0,i, B

′
0,1) . . . Enc(

∏m+1
i=1 sk0,i, B

′
0,k)

Enc(
∏m+1

i=1 sk1,i, B
′
1,0) Enc(

∏m+1
i=1 sk1,i, B

′
1,1) . . . Enc(

∏m+1
i=1 sk1,i, B

′
1,k)

Enc(
∏m+1

i=1 sk2,i, B
′
2,0) Enc(

∏m+1
i=1 sk2,i, B

′
2,1) . . . Enc(

∏m+1
i=1 sk2,i, B

′
2,k)

PK ′ = [PK

sk0,m+1

0 , PK
sk1,m+1

1 , PK
sk2,m+1

2]

To evaluate the result, each party applies decryption under their secret keys to
first column of the table. After each party did so, they can obtain result of the
voting.

While security of this optimization is yet to be proven, potentially it can re-
duce amount of computation needed to O(n · k) since size of table is now O(k)
and does not depend on n. Additionally, this scheme would be flexible to un-
known amount of voters, because voter applies their encryption during voting.

One more direction for future work is to provide security guarantees against
malicious voters and server. Voters can produce signature of the table to ensure
that server does not modify it and attack ZK-proof to verify that voting was
done correctly. While ZK-proofs traditionally cause high constant overhead, it
might be possible to design specific ZK-proofs for our application since both the
Inc and Rand operations are fairly elementary.

8 Acknowledgments and Work Distribution

We greatly appreciate support of 6.5610 team for providing feedback and guid-
ing our project. Special thanks to our TA Lila Chen, professor Henry Corrigan-
Gibbs, and professor Yael Kalai.

As per work distribution, here are the main contributions of each team member:

• Vlada Petrusenko - contributed to the design and analysis of both systems,
including research of related ideas. They are also the main author of the
writeup for section 1, second half of 5.

• Liza Horokh - contributed the most to the design and analysis of the
threshold voting system, including many technical design ideas. They are
also the main author of the writeup for sections 4, 7, and first half of 5.

• Pranjal Srivastava - contributed the most to the design and analysis of
the threshold voting system, originating with the finalized version of the
technical design. They are also the main author of the writeup for section
6.

19

• Nyx Theos - contributed the most to the design and analysis of the dis-
tributed authentication system. They are also the main author of the
writeup for section 3.

References

[1] T. ElGamal (1984) A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms https://link.springer.com/chapter/10.

1007/3-540-39568-7_2

[2] Ahamed et. al (2024) Accuracy-Privacy Trade-off in the Mitigation of Mem-
bership Inference Attack in Federated Learning
https://arxiv.org/abs/2407.19119

[3] Networkx, Min-node-cut implementation
https://networkx.org/documentation/stable/reference/

algorithms/generated/networkx.algorithms.connectivity.cuts.

minimum_node_cut.html

[4] 6.6510 Lecture notes (especially on additive shares and LHE the LWE based
encryption)

[5] https://crypto.stanford.edu/pbc/notes/crypto/voting.html

20

https://link.springer.com/chapter/10.1007/3-540-39568-7_2
https://link.springer.com/chapter/10.1007/3-540-39568-7_2
https://arxiv.org/abs/2407.19119
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.cuts.minimum_node_cut.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.cuts.minimum_node_cut.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.connectivity.cuts.minimum_node_cut.html
https://crypto.stanford.edu/pbc/notes/crypto/voting.html

	Introduction
	Background and Prior Work
	ElGamal
	BGW
	Additive Shares
	LHE
	Min-node cut

	Authentication Protocol Probabilistic Trust Propagation under Adversarial[0em] Mislabeling in Sparse Random Graphs
	Definitions and assumptions
	Minion Detection via Accusation Voting
	Security
	Runtime
	Future Work

	Formal objectives of the voting protocol
	Correctness
	Security
	Security assumptions

	Voting Protocol
	Setup
	Initialization
	Generating shares, Sv()
	Combining shares, S(, n, k)

	Voting process
	Incrementing the vote, Inc(A)
	Re-randomization, Rand(A)
	Calculating the result of voting, Eval(A)

	Analysis and Evaluation
	Security
	Honest-But-Curious non-quantum adversary
	Quantum Adversaries
	Malicious Parties

	Complexity and Comparision with BGW
	Security
	Time and Communication Complexity
	Summary

	More Application and Future Work
	Approve/Reject/No opinion
	Rejecting the candidate Decr(A)
	Summary

	Winning candidate
	Future work

	Acknowledgments and Work Distribution

