
Secrets and Spies
Secure Multiparty Computation for Two Spies

Kosi Nwabueze, Felix Prasanna, and Frederick Tang

Massachusetts Institute of Technology
{kosinw,fpx,ftang}@mit.edu

Abstract. Securemultiparty computation (MPC) enablesmultiplepar-
ties to collaboratively compute functions over private inputs without
revealing those inputs to other parties. In this paper, we explore the
application ofMPC to a generalized version of the turn-based strategy
game Two Spies. Our protocol allows N distributed players to partici-
pate in a perfectly secure game of Two Spies without a trusted moder-
ator. Each undercover player’s location remains confidential to other
players while ensuring gameplay is both fair and verifiable. Our pro-
tocol works under two adversarial models: semi-honest and malicious.
Under the semi-honest adversarial model, t < N/2 adversaries follow
the protocol while trying to learn as much information as possible
through collusion. Under themalicious adversarialmodel, t < N/3 ad-
versaries may actively deviate from the protocol and collude to learn
additional information.

Keywords: Secure multiparty computation · Secret sharing · Com-
mitments · Games.

1 Introduction

Two Spies [Sof25] is a turn-based strategy game developed by Steamclock
Software that pits two players against each other. Assuming the roles of
spies from rival countries, each player takes alternating turns navigating
across a map of Cold War Europe in an attempt to gain intelligence on the
other spy’s location. The objective is to be the first player to strike and elim-
inate the other spy before they strike and eliminate you. The core gameplay
ofTwoSpies revolves around intelligence gathering, economymanagement,
and movement across a map represented as a graph (see Fig. 1).

To simplify the discussion, we assume a game between two players, Al-
ice, whose turn we are considering, and Bob, her opponent. In the remain-
der of this section, we describe the game setup, a typical turn forAlice looks
like, and the core mechanics of the game, including cover and intel.

1.1 Setup

TwoSpies requiresa setupprocedure that relies on randomnessanda trusted
moderator. First, themoderator procedurally generates a graphG = (V,E).

2 Nwabueze, Prasanna, Tang

London Amster. Berlin Kyiv

Paris Monaco Geneva

Fig. 1. A small, hypothetical Two Spies map. The spy Alice is currently in Geneva,
while the spy Bob is in London.

Each graph G, also has a procedurally generated set of starting locations
S ⊂ V , where each vertex in S must not be an articulation point. Let N be
the number of players. The moderator randomly selects N locations from
S and assigns one to each player. Each player then starts the game at her
assigned location and automatically controls that city. Themoderator then
randomly chooses a permutation P of the set of players, which determines
the order in which turns are taken. Every player starts the game with her
cover blown.

1.2 Actions

By default, Alice performs two actions on her turn. Shemay gain bonus ac-
tions by preparing one or more times on her previous turn. She may also
gain bonus actions for her next turn by moving onto a city with a bonus
action. She may perform any of the following actions on her turn:

1. Move. Alice changes her location to an adjacent city on the map, corre-
sponding to an adjacent vertex in the graph. Moving causes her to go
under cover. If she moves to a controlled or occupied city, her cover is
blown and her location is revealed.

2. Control. Alice takes control of the city she currently occupies. If Bob
moves into a city controlled by Alice, his cover is blown and his location
revealed.Alicemay take control of cities already under another player’s
control.

3. Strike. Alice strikes a city. If Bob is occupying the struck city, he is elim-
inated. The last player remaining wins the game.

4. Wait. Alice remains in the same city. This action is functionally equiva-
lent to moving, but without changing her location.

5. Locate. Alice spends intel to reveal Bob’s location. If Bob is under deep
cover, the action has no effect.

Secrets and Spies 3

6. Go Deep. Alice goes into deep cover, which costs intel. While in deep
cover, her cover cannot be blown during the rest of her turn.

7. Prepare. Alice gains an additional action for her next turn. This action
also costs intel.

8. Strike Reports. For a one-time intel cost, Alice can unlock strike re-
ports. Once unlocked, she learns Bob’s location whenever he performs
a strike.

9. Rapid Recon. For a one-time intel cost, Alice can unlock rapid recon.
Bob will blow his cover and reveal his location if Alice moves into the
city he occupies.

1.3 Cover

Cover is a crucial mechanic that introduces uncertainty about a spy’s loca-
tion. After moving or waiting in a city, Alice goes under cover, making her
invisible to other players. However, her cover can be blown in the following
situations:

1. Alice controls a city.
2. Alice ends her turn in a city occupied by Bob.
3. Alicemoves into a city controlled by Bob.
4. Bob uses the locate action to find Alice.
5. Alice strikes a city after Bob has purchased strike reports.
6. Bob, after purchasing rapid recon, moves into a city occupied by Alice.
7. Alicemoves to a city with bonus intel or a bonus action.

Normally,Alice’s cover canbecompromised through theseactions.How-
ever, if she isunderdeep cover, her cover remains intact throughouther turn,
even if one of the conditions above ismet. Deep cover can only be activated
by performing the go deep action.

1.4 Intel

Intel, short for intelligence, acts as the in-game currency for Two Spies. Intel
allowsplayers topurchaseactionsduring their turns.Bydefault,Aliceearns
+2 intel per turn. She canearnbonus intel by controllingnormal cities, con-
trolling bonus cities, or moving to cities with bonus intel.

Cities with bonus intel initially reward +10 bonus intel when a player
moves onto them. The amount of bonus intel available is visible to all play-
ers and increases by a randomamount each turn if left unclaimed. The for-
mula governing the intel Alice earns each turn is:

intel/turn = 2 + 4× #bonus cities+ #normal cities.

4 Nwabueze, Prasanna, Tang

1.5 Shutdowns

To prevent games from lasting indefinitely, the map shrinks over time, re-
ducing the search space and forcing players into closer encounters. Ev-
ery few turns, cities farther from the center of the map–specifically non-
articulation points–shut down. Once a city is shut down, noplayermaymove
into it for the rest of the game.

If a player is occupying a city that shuts down, they are forced to move
to an active city. Importantly, players continue to earn intel for shut-down
cities they control, even though they canno longermove to or occupy them.

2 Background

We explore the use of secure multiparty computation to implement a pro-
tocol for generalized Two Spies without the need for a trusted moderator.
Prior work [SRA79;WUG16] have demonstrated the application of cryptog-
raphy to playing games without a moderator. In this section, we review the
necessarypreliminaries toproperly describe ourprotocol, including secret
sharing, secure multiparty computation, and commitments.

2.1 Secret sharing

Secret sharing divides a secret into N private values, called shares, which
are then distributed amongN parties. Many variants of secret sharing have
been proposed; the twomost popular in multiparty computation being ad-
ditive secret sharing andpolynomial secret sharing. Both secret sharing schemes
offer perfect or information-theoretic security,meaningnoadversary, even
with computationally unbounded power, can learn any information about
the secret given an unauthorized subset of shares. Despite the simplicity
of additive secret sharing, our protocols rely on polynomial secret sharing
due to important properties discussed in the next section.

Shamir [Sha79] originallyproposedapolynomial secret sharing scheme
that enables (t, n)–threshold secret sharing. In a threshold secret sharing
scheme, any subset of t or more shares from {1, . . . , n} can reconstruct the
secret. We now formally define the security and correctness properties of
the scheme:

Definition 1 (Thresholdsecret sharing).A (t, n)–threshold secret sharing scheme
overmessage spaceM consists of apair of efficientalgorithms (Share,Reconstruct).

Share is a randomized algorithm that takes as input a message m ∈ M and
outputs a sequence of n shares (Jm1K , . . . , JmnK).

Reconstruct is adeterministic algorithmthat givena set of 2-tuples{(i, JmiK)}i∈I

for |I| = t, outputs a messagem ∈M.

1. Correctness. For everym ∈M and for every I ⊆ {1, . . . , n} of size t,

Pr
[
Reconstruct({(i, JmiK)}i∈I) = m : (Jm1K , . . . , JmnK)← Share(m)

]
= 1.

Secrets and Spies 5

Algorithm 1: Share
Input: Secretm ∈ F, threshold t,

number of parties n
Output: Shares (s1, . . . , sn)
Choose random a1, . . . , at−1 ∈ F;
Let f(X) =
s+a1X+a2X

2+ · · ·+at−1X
t−1;

for i← 1 to n do
si ← f(i);

return (s1, . . . , sn)

Algorithm 2: Reconstruct
Input: t shares

(i1, si1), . . . , (it, sit)
Output: Secret s
s← 0;
for k ← 1 to t do

λk ←
∏t

j=1
j 6=k

ij
ij−ik

;

s← s+ λk · sik ;
return s

Fig. 2. Polynomial secret sharing as given by [Sha79]. Both algorithms are parame-
terized over message space F, number of parties n, and threshold t.

2. Security. For everym,m′ ∈M and for every I ⊆ {1, . . . , n} such that |I| < t,

(JmiK)i∈I ≡ (Jm′
iK)i∈I .

where (Jm1K , . . . , JmnK)← Share(m) and (Jm′
1K , . . . , Jm′

nK)← Share(m′).

The algorithms for polynomial secret sharing are shown in Fig. 2. Here,
the secret m ∈ F is hidden inside a randomly chosen polynomial f(X) ∈
F[X] such that f(0) = m. Using Lagrange interpolation, a polynomial of de-
gree t − 1 can be reconstructed from t unique points, allowing recovery of
the original message.

2.2 Secure multiparty computation

Secure multiparty computation (MPC) focuses on designing methods that
allow a set of n parties, each holding private input, to jointly evaluate a pub-
lic function f over their inputs, without revealing anything beyond the out-
put of the function. We now give a formal definition of the security model.

Definition 2 (Securemultiparty computation).Ann-party protocol securely
computes a function f in the presence of at most t corruptions, if for every PPT
adversary A controlling at most t parties, there exists a PPT simulator S control-
ling the same subset of parties in the ideal world, such that for any set of inputs
(x1, . . . , xn),

RealA(x1, . . . , xn) ≡ IdealS(x1, . . . , xn).

where RealA(x1, . . . , xn) is the output of all the parties after running the protocol;
IdealS(x1, . . . , xn) is the output of all the parties after handing their inputs to the
trusted party, who computes f on their input and returns the output y. The honest
parties output y and the adversarial parties (controlled by the simulator) output
whatever they want.

6 Nwabueze, Prasanna, Tang

Algorithm 3: ΠBGW

Setting: Each party Pi has input xi ∈ F.

Input Phase: Each party Pi secret shares input xi using polynomial secret
sharing. The parties obtain shares JxiK.

Output Phase: Let JziK be the output of the computation. Each party Pi

broadcasts its share JziK to all other parties. After each party Pi receives
t+ 1 shares, it reconstructs the output z.

Addition Gates: For each addition gate with inputs JxK and JyK, each party
locally computes: Jx+ yK← JxK + JyK.

Multiplication Gates: For each multiplication gate with inputs JxK and JyK,
the parties proceed as follows:
1. Each party locally computes JzK← JxK · JyK.
2. Each party Pi secret shares 0. Each party adds up shares of 0 with JzK2t to

obtain Jz′K2t.
3. Each party truncates its share Jz′K2t to Jz′Kt. This requires running ΠBGW to

convert a 2t polynomial to a t polynomial.

Fig. 3. Secure multiparty computation protocol ΠBGW as given by [BGW88].

Ben-Or, Goldwasser, andWidgerson [BGW88] introduced anMPCproto-
col basedonpolynomial secret sharing.Beaver,Micali andRogaway [BMR90]
developed a protocl based on additive secret sharing. Other notable MPC
constructionsarebasedona techniqueknownas garbled circuits. Yao [Yao86]
introduces garbled circuits in the context of a two-party computation pro-
tocol (2PC).

We consider a modified [Esc22] version of the MPC protocol introduced
by Ben-Or, Goldwasser, andWidgerson [BGW88]. The core idea of this pro-
tocol is to perform a secure function evaluation of f(x1, . . . , xk) on private
inputs (x1, . . . , xk) ∈ Fn by distributing polynomial secret shares JxjK

i to
party i for input j. Prior to evaluation, the function f would be compiled
to a circuit of multiplication and addition gates. To compute an addition
gate Jx+ yK, each party locally performs the calculation JxK + JyK. To com-
pute a multiplication gate Jx · yK, each party would first locally compute
Jx · yK ← JxK · JyK. Each party would engage in a Θ

(
n2

)
round of commu-

nications to reduce their share Jx · yK 2t to Jx · yK t. A formal description of
this protocol can be found in Fig. 3.

The protocol ΠBGW provides perfect security in the semi-honest adver-
sarial model with an honest majority (t < n/2). With the incorporation of
verified secret sharing (VSS), it also achieves perfect security under the
malicious model with a two-thirds honest majority (t < n/3), as proven by
Asharov and Lindell [AL17].

Secrets and Spies 7

Algorithm 4: Commit
Input: Secretm ∈ G, public generators g, h of a groupG of prime order q
Output: Commitment C ∈ G and nonce r ∈ Zq

r ←$ Zq;
C ← gmhr;
return C

Fig. 4. Discrete logarithm-based commitment scheme as given by [Ped92].

2.3 Commitments

Commitment schemes are cryptographic primitives that allow a party to
commit to a valuewhile keeping it hidden,with the ability to reveal it later. A
commitmentmust satisfy two key properties: binding (the committer can-
not change the committed value) and hiding (the commitment reveals no
information about the value until it is opened).

Definition 3 (Commitment scheme).Acommitment schemeovermessage space
M consists of a pair of efficient algorithms (Gen, Commit).

Gen is an efficient, randomized algorithm that takes as input security parame-
ter 1λ and outputs public parameters pp.

Commit is an efficient, randomized algorithm that takes as input public param-
eters pp, a messagem ∈ M and randomness r ←$ {0, 1}λ and outputs a commit-
ment.

1. Hiding. For everym0,m1 ∈M, pp← Gen(1λ) and r0, r1 ←$ {0, 1}λ,

(pp,Commit(pp,m0; r0)) ≈ (pp,Commit(pp,m1; r1)).

2. Binding. For every efficient adversaryA, (m0, r0,m1, r1)← A(pp).

Pr[m0 6= m1 and Commit(pp,m0; r0) = Commit(pp,m1; r1)] = negl(λ).

Pedersen [Ped92] proposed a commitment scheme based on the hard-
ness of the discrete log problem in a prime-order group G. In this scheme,
the commitment is computationally binding and statistically hiding. Ad-
ditionally, the scheme isadditively andmultiplicativelyhomomorphic, though
these properties are not utilized in ourwork. The generation algorithmGen
is trivial in Pedersen commitments, requiring only public generators g, h
of the group G (such that logg(h) is unknown). The commitment algorithm
Commit is given in Fig. 4

3 Protocols

In this section, we detail the protocols required to play the Two Spies game
without amoderator. From this point forward, we refer exclusively to a gen-
eralizationofTwoSpieswithanarbitrarynumberofplayers, rather than two.

8 Nwabueze, Prasanna, Tang

For clarity of exposition, we introduce the parties Alice, Bob, Carol, Dave,
and Eve. Figures will illustrate two parties for simplicity, but the concepts
generalize naturally to many players.

3.1 Threat Model

Following the assumptions in ΠBGW, we assume that each party communi-
cates synchronously using private and authenticated point-to-point channels.
Wedonot considerByzantine faults arising from the reliable asynchronous
model, which allows adversaries to delay messages arbitrarily.

Eachparty uses remote procedure calls (RPCs) for communication,with
retries upon timeout and parallel issuing of RPCs to improve performance.

The threat model assumes that adversaries attempt to gain unfair ad-
vantages during the game. Certain information, such as players’ locations
or the number of players sharing a location, must remain private. A key
security goal is to ensure that an adversary cannot learn any information
about players’ locations unless explicitly revealed according to the game
rules. Additionally, adversaries are assumed to want to continue playing
the game, so we assume timely communication without arbitrary message
delays and well-formedmessages.

3.2 Setup

One party, say Alice, initially acts as the host of the game. Players join the
game by sending an RPC to Alice, at which point she adds them to a list of
active players. We assume that Alice remains honest until all parties have
joined. Each player supplies Alice with their network address addr, public
key pk, and verification key vk upon joining.

Alice records this information for all players and thenbroadcasts it to ev-
eryone once the game setup is complete. After this, Alicemay be corrupted
by an adversary without affecting the security guarantees.

3.3 Randomness

Two Spies relies heavily on centralized randomness–for example, in proce-
durally generating the graph G = (V,E), determining starting locations
S ⊂ V , and selecting turn orders and city shutdowns. Without a central-
ized moderator, all parties must independently derive the same sequence
of random decisions. This is achieved through a shared seed that is securely
negotiated.Eachparty contributesaprivatenonce ri ←$ F. Thepublicnonce
r is computed as

r =

n∑
i=1

ri.

To prevent amalicious party, say Eve, from choosing her nonce after seeing
others’ contributions, we use a commitment-based protocol ΠSeed:

Secrets and Spies 9

Alice Bob

rA ←$ F∗ rB ←$ F∗

tA ←$ F∗ tB ←$ F∗

cA ← grAhtA cB ← grBhtB

commit cA

commit cB

reveal rA, tA

reveal rB , tB

. Abort if ci 6= grihti

r ← rA + rB r ← rA + rB

Fig. 5. Seed generation protocol ΠSeed using Pedersen commitments. g and h are
generators of the multiplicative group F∗ such that logg(h) is not known.

1. Each party commits to their private nonce ri using a Pedersen commit-
ment C(ri; ti) = grihti .

2. After all commitments are broadcast, each party reveals (ri, ti).
3. Each party checks that the revealed values match the commitments.
4. If the verifications succeed, each party computes the public nonce r.

The random oracleH(r) is then used as the seed for a common crypto-
graphically secure pseudorandom number generator (CSPRNG). Fig. 5 il-
lustrates protocol ΠSeed.

3.4 Privacy

The primary challenge in playing Two Spies without a moderator is pre-
serving the privacy of each player’s location while ensuring that moves are
valid. We address this using secret sharing and secure multiparty compu-
tation.

Each player’s location is encoded as a one-hot vector xu ∈ 0, 1|V | where:

(xu)i =

{
1 if i = u

0 otherwise

10 Nwabueze, Prasanna, Tang

Each party holds private shares of each player’s location. For example, Eve
stores:(

JxAliceK
Eve

, JxBobK
Eve

, JxCarolK
Eve

, JxDaveK
Eve

, JxEveK
Eve

)
: list F|V |.

Suppose Eve wishes to move from Monaco to Berlin. She must prove to
all players that the move is valid, that is, (Monaco,Berlin) ∈ E, without re-
vealing her current or new location.Wemodel the adjacencymatrix ofG as
A(G) ∈ {0, 1}|V |×|V | where:

A(G)ij =

{
1 if (vi, vj) ∈ E

0 otherwise

To verify the move, players jointly compute:

f(xu, xv) = 〈xv, A(G)xu〉.

where xu and xv represent Eve’s starting and ending locations. If f(xu, xv) =
1, the move is valid. Otherwise, the protocol aborts. Fig. 6 describes the
move verification protocol ΠVerify.

Proof sketch. Since each location is represented as a one-hot vector, the prod-
uct A(G)xu yields a vector whose entries indicate the set of cities adjacent to Eve’s
current location u. Taking the inner product 〈xv, A(G)xu〉 isolates the entry corre-
sponding to the proposeddestination v. Thus, f(xu, xv) = 1 if and only if (u, v) ∈ E,
meaning themove is valid. This computationpreserves privacywhile verifyingmove
correctness. �

At times, a player must reveal their location to other players. For exam-
ple, if Alice ends her turn on Carol’s city, then Alicemust reveal her location
to Carol. Another example, if Dave uses the locate action to reveal Bob’s lo-
cation, then Bobmust reveal his location to Dave. Depending on the game
mechanics, there are three types of location sharing:

1. Private sharing. A player reveals their location to a single party (e.g.,
when two spies end their turns on the same city, or when rapid recon
reveals a location).

2. Semi-public sharing. Aplayer reveals their location toa subset ofparties–
for example, to those who have unlocked strike reportswhen a strike oc-
curs.

3. Public sharing. A player reveals their location to all parties–for exam-
ple, when controlling a city, being located, or moving onto a bonus in-
tel/action city.

Semi-public sharing and public sharing. Suppose Carolmust reveal her loca-
tion to a subset I ⊆ P of parties (which could includeall players). Eachparty
p ∈ I runs the following protocol ΠPublicShare with Carol. In public or semi-
public sharing, all playersknowthatCarol’s location isbeing revealed, though
they may not all learn the location themselves (in semi-public sharing).
Fig. 7 describes the public sharing protocol ΠPublicShare.

Secrets and Spies 11

Alice Eve

Input: JxuKAlice ← JxEveKAlice Input: JxuKEve ← JxEveKEve

(JxvKAlice , JxvKEve)← S(xv)

JxvKAlice

JzKAlice ← 〈JxvK , A(G) JxuK〉 JzKEve ← 〈JxvK , A(G) JxuK〉

JzKEve

JzKAlice

z ← R(JzKAlice , JzKEve) z ← R(JzKAlice , JzKEve)

. Abort if z = 0 .

JxEveKAlice ← JxvKAlice JxEveKEve ← JxvKEve

Fig. 6.Move verification protocol ΠVerify. xu is the starting position for Eve and xv is
the ending position.

Private sharing. In private sharing, we want only the designated recipient,
Carol, to learn whether another player, Bob, occupies the same city without
others learning anything. To detect a location match, we compute:

b = 〈xBob, xCarol〉.

where b = 1 indicates that Bob and Carol share the same city. Since neither
player can trusted to compute b correctly alone, all parties jointly compute
the inner product using secure multiparty computation. All other parties
own shares of their locations, so all parties will perform amultiparty com-
putation to compute the function g : {0, 1}|V | × {0, 1}|V | → {0, 1}:

g(xa, xb) = 〈xa, xb〉.

Since we only want Carol to learn the result of g, each party sends Carol
shares of g(xBob, xCarol). If g(xBob, xCarol) = 1, then Carol knows Bob shares
her location without Bob having to send his location using ΠPublicShare. The
computation of g is implemented by protocol ΠPrivateShare in Fig. 8.

One-hotness verification Note that the above protocols breaks if a player’s
position vector is not one-hot. A malicious party could share a vector with
multiple 1’s, and this could lead to gain of illegal information: in the above
example, if Carol increased the number of 1’s in her vector, the g function

12 Nwabueze, Prasanna, Tang

Carol p

Input: JxCarolK
Carol Input: JxCarolK

p

JxCarolK
Carol

xCarol ← R(JxCarolKCarol , JxCarolKp)

Fig. 7. Public location sharing protocol ΠPublicShare.

has an increased chance of returning a 1, and Carol can then narrow down
the possibilities of Bob’s location.
Our Security model only considers honest-but-curious parties, but we can
extendourprotocol slightly topreventmaliciousparties fromcheatingwhile
sharing location.
we propose the following protocol for checking that a shared location x ∈
F|V | is indeed one hot:
Wefirstmodify howwegenerate the shareswhen sharing the locationx.We
use a n out of n Secret sharing scheme, which generates P random shares
(with P −1 degrees of freedom), x1, x2, . . . , xP ∈ F|V | such that x1+x2+ · · ·+
xP = x Using the Pseudorandom number generator and agreed upon seed
in Section 3.3, all party will jointly generate a vector r = {r1, r2, . . . , r|V |} ∈
F|V |.
Also define another vector R = {r21, r22, . . . , r2|V |} ∈ F|V |.
Each party Pi with share xi independently computes ti = 〈xi, r〉 and Ti =

〈xi, R〉. UsingMPC, all partieswill jointly compute
∑P

i ti and
∑P

i Ti and then
check if

(

P∑
i

ti)
2 =

P∑
i

Ti

Clearly if x were a one hot vector, and had a 1 at entry k, (
∑P

i ti)
2 = r2k, and∑P

i Ti = Rk = r2k, so we have correctness.
It can be shown that if x were not one hot, the probability that the check
would pass is bounded by 2

||F|| , which is negligible for large ||F||.

4 Implementation

To demonstrate the practicality of our protocols, we built a networked pro-
totype of the Two Spies game using the Go programming language [Aut25].
We chose Go over the more traditional choice of Python for cryptographic
work for three main reasons:

1. Static typing. Go is statically typed, making it easier to catch errors at
compile time rather than at runtime, improving code reliability.

Secrets and Spies 13

2. Standard library. Go offers a robust standard library. Common crypto-
graphic primitives SHA256 and RSA are available via crypto/sha256
and crypto/rsa, respectively. Arithmetic with large integers is sup-
ported via math/big, and networking is facilitated by net/rpc.

3. Concurrency. Go’s goroutines provide lightweight, easy-to-use concur-
rency, enablingbetterperformance innetworkedenvironments.Unlike
Python,whichuses theGlobal Interpreter Lock (GIL) andprimarily sup-
ports async I/O, Go can execute goroutines across multiple OS threads.

4.1 Security Considerations

While the prototype successfully implements the basic functionality, it is
closer to a proof-of-concept than a production-ready build, primarily due
to security limitations.

First, ΠBGW assumes private and authenticated point-to-point channels. In a
production setting, we would enforce this using TLS (crypto/tls) to pre-
vent eavesdropping or tampering. However, for the prototype, we opted for
plaintextRPCs to reducecomplexity, relyingona lightweight sign-then-encrypt
scheme to protect sensitive information. When Alicewishes to send ames-
sagem to Bob, she sends:

c← Enc(pkBob, addrBob‖m‖Sign(skAlice,H(addrBob‖m))).

where Enc is public-key encryption (RSA-OAEP), Sign is a digital signature
scheme (RSA-PSS), and H is a hash function (SHA256). Upon receiving c,
Bobdecrypts it, verifies the address, andauthenticatesAlice’s signatureus-
ing her verification key.

Additionally, the prototype does not currently use constant-time cryp-
tography. For instance, the math/big package is known to have timing side
channels, which could be exploited by a powerful adversary.

4.2 Cryptographic Instantiations

The cryptographic primitives used in our implementation are as follows:

1. Public-Key Encryption (Enc,Dec): RSA-OAEP, using crypto/rsa.
2. Signatures (Sign,Vf): RSA-PSS, using crypto/rsa.
3. Hash Function (H): SHA256, using crypto/sha256.
4. CSPRNG: ChaCha8, from internal/chacha8rand.

For polynomial secret sharing and ΠBGW, we implemented field opera-
tions over Zp

1 using arbitrary-precision integers.

1 p is the 1536-bit prime declared in RFC 3526 [KK03]

14 Nwabueze, Prasanna, Tang

Bob Carol

Input: JxBobK
Bob , JxCarolK

Bob Input: JxBobK
Carol , JxCarolK

Carol

JzKBob = 〈JxBobKBob , JxCarolKBob〉 JzKCarol = 〈JxBobKCarol , JxCarolKCarol〉

JzKBob

z ← R(JzKBob , JzKCarol)

Fig. 8. Private location sharing protocol ΠPrivateShare.

5 Conclusion

In this paper,weexplored theapplicationof securemultiparty computation
(MPC) to the turn-based strategy game Two Spies, generalizing the game to
an arbitrary number of players. Our work addresses the challenge of en-
abling secure gameplay without relying on a trusted moderator, ensuring
that each player’s information remains private while maintaining fairness
and verifiability.

We detailed several protocols, including ΠSeed for secure random seed
generation using Pedersen commitments,ΠVerify for validatingmoves using
the adjacency matrix of the game map, and ΠPublicShare and ΠPrivateShare for
various modes of location sharing.

To demonstrate the practicality of our approach, we developed a net-
worked prototype of the game using the Go programming language. While
the prototype successfully implements the core functionality, it is primar-
ily a proof-of-concept and leaves room for improvement in security prac-
tices, such as enforcing TLS-secured channels and employing constant-
time cryptography.

5.1 Contributions

Nwabueze drafted the initial rough version of the paper, while Prasanna
and Tang refined the final version. All authors contributed to the paper’s
presentation.Tangdeveloped thecore theorybehindΠSeed,ΠVerify,ΠPublicShare,
and ΠPrivateShare, with Nwabueze and Prasanna refining these ideas. All au-
thors contributed to the development of the proof-of-concept game imple-
mentation.

5.2 Acknolwedgements

WethankourTAadvisor, LilaChen, forherguidance throughout theproject.
Wealso thankProfessorsCorrigan-Gibbs andKalai for their passionate and
instructive lectures during the semester. Their expertise and enthusiasm
for cryptography inspired us to pursue this project.

Secrets and Spies 15

References

[AL17] Gilad Asharov and Yehuda Lindell. “A Full Proof of the BGWPro-
tocol for Perfectly Secure Multiparty Computation”. In: Journal
of Cryptology 30.1 (2017), pp. 58–151. DOI: 10.1007/s00145-
015-9214-4. URL: https://doi.org/10.1007/s00145-
015-9214-4.

[Aut25] The Go Authors. The Go Programming Language. Accessed: 2025-
04-24. 2025. URL: https://go.dev/.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Com-
pleteness Theorems for Non-Cryptographic Fault-Tolerant Dis-
tributedComputation”. In:Proceedings of the20thAnnualACMSym-
posiumonTheoryofComputing (STOC). Chicago, Illinois,USA,1988,
pp. 1–10. DOI: 10.1145/62212.62213. URL: https://dl.
acm.org/doi/10.1145/62212.62213.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. “The Round
Complexity of Secure Protocols”. In: Proceedings of the 22nd An-
nualACMSymposiumonTheoryofComputing (STOC). Baltimore,Mary-
land,USA:Association forComputingMachinery, 1990,pp. 503–
513. ISBN: 0897913612. DOI: 10.1145/100216.100287. URL:
https://doi.org/10.1145/100216.100287.

[Esc22] DanielEscudero.An Introduction toSecret-Sharing-BasedSecureMul-
tiparty Computation. Cryptology ePrint Archive, Paper 2022/062.
2022. URL: https://eprint.iacr.org/2022/062.

[KK03] Mika Kojo and Tero Kivinen. More Modular Exponential (MODP)
Diffie-Hellmangroups for InternetKeyExchange (IKE). RFC3526.May
2003. DOI: 10.17487/RFC3526. URL: https://www.rfc-
editor.org/info/rfc3526.

[Ped92] TorbenPrydsPedersen. “Non-Interactiveand Information-Theoretic
SecureVerifiableSecret Sharing”. In:Advances inCryptology—CRYPTO
’91. Ed. by JoanFeigenbaum.Berlin,Heidelberg: SpringerBerlin
Heidelberg, 1992, pp. 129–140.

[Sha79] Adi Shamir. “How to Share a Secret”. In: Communications of the
ACM 22.11 (1979), pp. 612–613.DOI:10.1145/359168.359176.
URL: https://doi.org/10.1145/359168.359176.

[Sof25] Steamclock Software. Two Spies Homepage. 2025. URL: https:
//www.playspies.com.

[SRA79] Adi Shamir, Ronald L. Rivest, and Leonard M. Adleman. Mental
Poker. Tech. rep. MIT-LCS-TM-125. Massachusetts Institute of
Technology, 1979. URL: https://people.csail.mit.edu/
rivest/pubs/SRA81.pdf.

[WUG16] Ashley Wang, Cristhian Ulloa, and Ronald Gil. Distributed Cryp-
tographic Mafia. Accessed: 2025-04-12. 2016. URL: https://
courses.csail.mit.edu/6.857/2016/files/7.pdf.

[Yao86] AndrewChi-Chih Yao. “How toGenerate andExchange Secrets”.
In:27thAnnualSymposiumonFoundations ofComputerScience (FOCS).

https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1007/s00145-015-9214-4
https://go.dev/
https://doi.org/10.1145/62212.62213
https://dl.acm.org/doi/10.1145/62212.62213
https://dl.acm.org/doi/10.1145/62212.62213
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://eprint.iacr.org/2022/062
https://doi.org/10.17487/RFC3526
https://www.rfc-editor.org/info/rfc3526
https://www.rfc-editor.org/info/rfc3526
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://www.playspies.com
https://www.playspies.com
https://people.csail.mit.edu/rivest/pubs/SRA81.pdf
https://people.csail.mit.edu/rivest/pubs/SRA81.pdf
https://courses.csail.mit.edu/6.857/2016/files/7.pdf
https://courses.csail.mit.edu/6.857/2016/files/7.pdf

16 Nwabueze, Prasanna, Tang

1986, pp. 162–167.URL:https://dl.acm.org/doi/abs/10.
1109/SFCS.1986.25.

https://dl.acm.org/doi/abs/10.1109/SFCS.1986.25
https://dl.acm.org/doi/abs/10.1109/SFCS.1986.25

	Secrets and Spies

