
Encrypt What Matters: ROI-Guided FHE for CNN

Inference

Ali Backour1, Juan Reyes1, Jaime Punyed1, and Ana Onoprishvili1

1Massachusetts Institute of Technology

Spring 2025

Abstract

Fully Homomorphic Encryption (FHE) enables privacy-preserving machine learn-
ing by allowing inference on encrypted data, bbut its high computational cost limits
practical use. In this work, we introduce a novel approach to reduce this overhead
by encrypting only the sensitive regions of input data, known as Regions of Inter-
est (ROI), while keeping the rest in plain-text. Our approach leverages the local
structure of Convolutional Neural Networks (CNN), where computations are spa-
tially constrained, to ensure that encrypting a small sensitive region affects only a
limited portion of the network. We provide a detailed theoretical analysis showing
that ROI-based encryption can yield an order-of-magnitude speedup compared to
full encryption. Our technique enables efficient and secure inference for applications
like facial recognition, medical imaging, and document redaction, without requiring
model retraining or compromising sensitive information.

1 Introduction

Machine learning has become a transformative force across a wide range of applica-
tions, from language processing to computer vision [1]. With the rapid advancement
and widespread adoption of large language models (LLMs), an increasing number of
users rely on these systems for tasks involving sensitive personal data, such as medical
imaging, facial recognition, and document analysis [2, 3]. For instance, clinics may use
Machine Learning models to better understand the statistics of some diseases, which re-
quires processing patients’ private data [4]. Similarly, security checkpoints often use face
recognition models, which involve analyzing sensitive biometric data [5]. While running
such models locally is infeasible due to hardware constrains, these data and computations
are usually outsourced to remote servers which raises serious privacy concerns [6]. The
servers are vulnerable to attacks that can compromise the user’s privacy [7]. Some ser-
vice providers may act under an honest-but-curious model, where data might be leaked.

To handle such risks, several research efforts focused on enabling Machine Learning
models (Neural Networks) to run on encrypted data, ensuring that servers do not have
access to sensitive data [8]. A powerful and relevant tool that was used for this pur-
pose is Fully Holomorphic Encryption (FHE) which allows the computation on cipher
texts without requiring decryption [9]. The idea is for the client to encrypt data before

1

feeding it to the LLM, let it evaluate the data homomorphically, and then decrypt the
result on the client side. Although FHE was theoretically implemented in Gentry paper
[9], its practical use for Machine Learning have faced several challenges. First of all,
FHE schemes are inherently inefficient especially when applied to deep and complicated
Neural Networks [8, 10]. Second, necessary Neural Networks components such as acti-
vation functions (e.g. ReLu, Sigmoid, Tanh ...) [11] are not polynomial operations and
hence not supported in common FHE schemes. Third, FHE schemes often operate over
integers, while neural networks typically require floating-point precision for weights and
activations[12].

One of the first efforts to address these problems was CryptoNet [13] which demon-
strated the feasibility of using FHE for Machine Learning Inference. In this paper,
Dowlin et. al. encrypted the input images pixel by pixel, fed them to a 5-layer CNN,
and then decrypted the output. The authors used polynomial activation functions (e.g.
x2) because it is FHE-friendly. They also implemented some software (using Chinese
reminder theorem so that the model is more precise when encoding large numbers) and
hardware (using SIMD operations) optimizations to make their model faster. Subsequent
works, such as LOLA and FHE-DiNN [14, 15], introduced further optimizations and ar-
chitecture adaptations to improve the performance of FHE. However, a major drawback
of these approaches is the need to redesign the Neural Network architecture specifically
to handle encrypted data, often requiring retraining complicated deep neural networks
from scratch, a process that takes significant amount of time and resources.

More recently, Torus Fully Homomorphic encryption (TFHE) [16] introduced Programmable
Bootstrapping, which allows arbitrary functions to be evaluated homomorphically using
lookup tables. This scheme was later implemented by Zama AI [17], enabling encrypted
inference without the need for architecture-specific retraining. However, they still suffer
from a fundamental bottleneck: computational overhead . Even with hardware acceler-
ation, FHE inference remains orders of magnitude slower than its plaintext equivalent,
limiting its usability in time-sensitive scenarios[10, 8, 18].

In this work, we explore a complementary approach to reduce the performance over-
head: partial encryption of input data. Specifically, we propose a method that encrypts
only regions of interest (ROI) in the input, while leaving the remainder in plain text.
This is particularly effective for convolutional neural networks (CNNs), where computa-
tion is inherently local and the presence of encrypted data affects only a limited portion
of the circuit [19, 20]. We demonstrate that in CNNs, ROI-based encryption leads to
significant reductions in circuit depth, gate count, and inference time, without retraining
the model or compromising the privacy of sensitive regions. To the best of our knowl-
edge, our approach, Encrypt What Matters, is the first to apply ROI-based selective
encryption for CNN inference in the context of fully homomorphic encryption (FHE).

2 Preliminaries

2.1 Notation

Throughout this paper we will constantly be working over algebraic objects such as rings,
fields and tori. We refer to elements of these objects using lower-case letters, e.g. a ∈ Z.

2

We refer to vectors with bold lower-case letters, e.g. a ∈ Zn. Lastly, we refer to the dot
product between two vectors a,b as ⟨a,b⟩, and the product between two members of a
polynomial ring a, s as a · s.

2.2 Learning With Errors Assumption (LWE)

Many of the FHE schemes that have been proposed so far rely on the learning with er-
rors assumption (LWE) or natural extensions such as Ring-LWE (RLWE), Torus-LWE
(TLWE) and General-LWE (GLWE). The purpose of this subsection is to introduce all
these assumptions with some emphasis in TLWE and GLWE which are used in TFHE,
the scheme that we use for our work. Regev [21] defined the LWE assumption as follows.

Learning With Errors (LWE). For a security parameter λ, let n = n(λ) be an
integer dimension, let p = p(n) ≤ poly(n) be a prime integer modulus, and χ : Zp → R+

be an error probability distribution on Zp. Now consider the following two distributions:
for the first one, sample (ai, bi) uniformly over Zn+1

p ; for the second one let s ∈ Zn
p

be a secret vector uniformly sampled from Zn
p , then sample ai uniformly from Zn

p and
sample ei uniformly from χ, the resulting distribution is (ai, ⟨s,ai⟩+ ei). The LWEn,p,χ

assumption is that it is infeasible to distinguish one distribution from the other.

It was under LWE that Gentry [9] showed the first ever construction of a fully ho-
momorphic encryption scheme. Since then, there have been numerous propositions that
aimed to reduce the time-space complexity. Many of these newer schemes strayed away
from the traditional LWE definition above. For instance, the celebrated BGV [22] scheme
uses a variant of LWE which is defined over rings. They define the Ring Learning with
Errors assumption as follows.

Ring Learning With Errors Assumption (RLWE). For security parameter λ, let
f(x) = xd + 1 where d = d(λ) is a power of 2. Let q = q(λ) ≥ 2 be an integer. Let
R = Z[x]/(f(x)) be a polynomial ring, and let Rq = R/qR. Let χ = χ(λ) be a dis-
tribution over R. The RLWEd,q,χ assumption is that it is infeasible to distinguish the
following two distributions: In the first distribution, one samples (ai, bi) uniformly from
R2

q . In the second distribution, one first draws s← Rq uniformly, then samples ai ← Rq

uniformly, ei ← χ uniformly, and sets bi = ai · s+ ei.

There are three important things to note here. The first one is that LWE and RLWE
are syntactically the same, both assume that it is infeasible to distinguish between two
distributions, one truly random and one that is not random but has some random noise.
The second is that for the noisy distribution of LWE we are sampling n elements at
random, while in RLWE we are just sampling 1 element at random. The last one is that
Z = Z[x]/(xd +1) for d = 1. From these similarities and differences the authors of BGV
[22] define the General Learning with Errors problem.

General Learning With Errors Assumption (GLWE). For security parameter
λ, let n = n(λ) be an integer dimension, let f(x) = xd + 1 where d = d(λ) is a power
of 2. Let q = q(λ) ≥ 2 be a prime integer. Let R = Z[x]/(f(x)) be a polynomial ring,
and let Rq = R/qR. Let χ = χ(λ) be a distribution over R. The RLWEd,q,χ assumption
is that it is infeasible to distinguish the following two distributions: In the first distri-

3

bution, one samples (ai, bi) uniformly from Rn+1
q . In the second distribution, one first

draws s ← Rn
q uniformly, then samples ai ← Rn

q uniformly, ei ← χ uniformly, and sets
bi = ⟨ai · s⟩+ ei.

The proposed FHE schemes are easier to implement under LWE but have worse per-
formance than those under GLWE, suggesting a trade-off between performance/imple-
mentability and dimension/sample size, as pointed out in [22]. The generalization above
can be further extended to work over R-mod ules, and its security has been proven via
reductions in [23]. In our implementation we will use this R-module version since we
will be working with the TFHE scheme [16], a GSW-based FHE which works over the
real torus T = R/Z which is a module of the integer ring.

2.3 Programmable Bootstrapping

The construction of a FHE scheme remained an open problem for more than 30 years
until Gentry’s scheme [9] was devised. One of the groundbreaking ideas behind the
construction was bootstrapping. In short, GLWE-based schemes have the property that
every operation will increase the range of the noise distribution χ until there is a point
where the GLWE cipher-texts become too noisy to maintain correctness. To circum-
vent this problem Gentry proposed the idea of homomorphically decrypting data that
has been re-encrypted using a different key, effectively reducing the noise while keeping
information secure. This technique called bootstrapping is present in all of the GLWE-
based schemes, transforming them from leveled homomorphic encryption schemes into
FHE [24].

The magic (and usefulness) of TFHE comes from what the authors call Programmable
Bootstrapping. This technique allows the scheme to evaluate arbitrary functions imple-
mented as a look-up table during the bootstrapping phase of the scheme. For clarity
and completeness we show a digest of their procedure ahead.

2.3.1 Blind Rotations

Let the plaintext µ = µ0 + µ1x + · · · + µn−1x
n−1 be such that each of the coefficients

have log(q) bits and are of the form shown in Figure 1 below.

µi = 0 · · · 0 νi 1011 · · · 0

padding message noise

Figure 1: Plaintext format

Notice that the same message can be represented by several different plaintexts with
varying amounts of noise. Let ν̄j be the noiseless representation corresponding to mes-
sage encoding j, i.e. the message section of µi = j.

The idea behind blind rotations is to use these ν̄j to define what the authors in [17]
call the static polynomial. Let v = ν̄0 + · · · + ν̄q−1x

q−1 be the static polynomial, then
multiplying v by the monomial x−µi will shift the position of the coefficient of xµi to

4

be the independent coefficient, i.e. νi is now the independent coefficient. All we have
to do now is extract the coefficient and continue with a noise-reduced encryption of µi.
Naturally, these multiplications of polynomials are performed homomorphically as part
of the bootstrapping procedure to satisfy the security of the scheme.

2.3.2 Look-up Table Evaluation

Note that when we are performing the blind rotation, we are obtaining the noise-reduced
encryption of µi, because we decided this was the desired output when defining the static
polynomial. Essentially, we are mapping each possible encryption to their noise-reduced
version and looking it up using the static polynomial as a look-up table. We can abuse
this idea to evaluate arbitrary functions while performing bootstrapping (hence the name
programable bootstrapping).

Formally, consider the function Upper defined in [17] which maps i to ν̄i. Let f : D → F
be an arbitrary function from domain D to image F , and consider the encoding and
decoding functions of both D and F with respect to Z/qZ which is where the coefficients
of the plaintext lie. So,

Encode : Z/qZ→ D Decode : D → Z/qZ
Encode’ : Z/qZ→ F Decode’ : F → Z/qZ.

Then, let T be a function such that T = Encode’◦f ◦Decode◦Upper, and consider the
new static polynomial v = T [0] + · · ·+ T [q − 1]xq−1. Naturally, the result of performing
the blind rotation procedure with this new static polynomial is the evaluation of the
noise-reduced plaintext on f . Therefore, we can use this static polynomial as a look-up
table for any arbitrary function f provided the encoding and decoding functions. For
visualization refer to the diagram below [17].

Z/qZ Z/qZ

D I

Decode

f

Encode′

Figure 2: Arbitrary function implementation

3 Our Approach

In this work, we propose a method to reduce the computational overhead of homomor-
phic inference by selectively encrypting only the sensitive portions of the input, also
known as Regions of Interest (ROI). The key insight is that only certain parts of the
input actually require privacy protection. For instance, in an image of a person, the
background often carries little privacy risk compared to the face.

Let’s assume we have a model M, which we model as circuit C, takes n inputs and

5

that our data is x = (x1, x2 . . . , xn). Let the output of the model be y = C(x). Tra-
ditionally, one will homomorphically encrypt x to get the ciphertext c = (c1, c2 . . . cn)
then we decrypt C(c) to get y as shown in Figure 3 below [13].

Figure 3: Traditional Protocol to use FHE in Machine Learning inference

In contrast, let’s assume that we only consider x̃ = (x1, x2 . . . xm) to be sensitive
while the rest of the data x′ = (xm+1, xm+2, . . . xn) to be the plaintext (background).
Let’s partially evaluate C on x′ to get C′ which takes m input. Now, we repeat the
traditional protocol of homomorphically encrypting x̃ to get ciphertext c̃ and decrypting
C′(c̃), as shown in Figure 4 below.

Figure 4: ROI protocol to use FHE in Machine Learning inference

As a result, our approach will gain a significant speed-up if size(C′) < size(C). How-
ever, this is not always the case. IfM is a Fully-connected Neural Network with several
hidden layers [25], the resulting circuit C′ will have almost the same size as C. For in-
stance, consider the neural network in Figure 5 below. Notice that only one bit of the
input is encrypted but C′ will be exactly the same as C except for the first layer. We
refer to this phenomenon as Propagation of Sensitivity which measures the extent to
which encrypted input values influence downstream computations throughout the net-
work. Formally, we define the Propagation of Sensitivity at layer i as the number of
gates whose computation depends on any encrypted input, denoted by |Si|. The total
propagation across a depth-d network is then given by:

Total Propagation =
d∑

i=1

|Si|

which quantifies how much of the circuit is influenced by encrypted regions throughout
the network.

In architectures like Fully-connected Neural Network, this propagation is maximal
(i.e Total Propagation ≈ Size of the Network).

6

Figure 5: Fully connected neural network with one input encrypted

Fortunately, by its nature, CNN will minimize the propagation of sensitivity [19, 20].
Let’s assume that our input x is an n × n image and let x̃ to be a square part of that
image of size m×m, and that the kernel of the CNN is k × k. Hence the circuit C rep-
resentingM will take n2 input. Notice that each input is connected to at most 2k × 2k
gates in the following layers. Moreover, each consecutive m2 input gates are connected
to at most (m+2k)2 gates in the next layer. Hence, the propagation per layer is equal to
(m+2k)2. As a result, the circuit C′ will take m2 inputs, and the second layer will be of
size (m+2k)2. More specifically, the dth layer will be of size (m+2kd), growing linearly
in d. Thus, for models with more compatible parameters (such as a lower depth), the
propagation is diminished more, obtaining better results. Figre 6 below demonstrates
the propagation of sensitivity per layer for an image in a CNN

Figure 6: Propagation of encrypted data from layer i to i+ 1 in C. The shaded square
represents the encrypted pixels

4 Theoretical Speed up

In this section, we will discuss the theoretical speed up that our scheme will bring. Again,
let the input be an n×n image, for which we only want to encrypt the sensitive data S,
which we assume is an m×m square. Let the CNN have d layers and a filter of size k×k.

First, there is a straightforward speedup for the Client that wants to send this encrypted
message, as they do not need to encrypt the whole n × n image, but instead a much
smaller m×m square.

More importantly, on the server side, the CNN circuit C should be partially evaluated
to get C′ which will be significantly smaller, as we will demonstrate below. Both C and

7

C′ have addition and multiplication gates (scaling) between encrypted and clear data,
as well as activation function gates applied to both encrypted and non-encrypted in-
puts, which, in the encrypted case, are evaluated via programmable bootstrapping using
lookup tables which is significantly slower.

As discussed in Section 3, the fan-out of each encrypted gate (corresponding to a pixel)
in the ith layer extends to neighboring gates in the (i + 1)th layers due to the local
connectivity of convolutional operations. More specifically, if Si is the set of gates in
the ith layer in C that have S as one of their ancestors, then as shown in section 3,
|Si+1| ≤ (m′ +2k)× (m′× 2k) where |S| = m×m. Hence, |Si| ≤ (m+2ki)× (m+2ki).

Recall that in C, each layer will have k2 · n2 scaling gates (i.e. multiplication between
encrypted data and clear data (weights)). However, in C′, the (i + 1)th layer will only
have k2(m+ 2ki)2 scaling gates.

For the addition gates, each application of a convolutional filter requires summing the
results of multiple scaling gates. These addition gates operate over encrypted data
only when the corresponding multiplications involve inputs within the encrypted region,
which grows to a size of (m + 2ki) × (m + 2ki) at the ith layer. Each addition is fol-
lowed by an activation function (e.g., ReLU as shown in Figure 1), which is the most
computationally expensive operation when applied to encrypted data due to the need
for programmable bootstrapping [16, 17]. Since there is one activation per addition, we
incur (m+2k(i+1))2 encrypted activation function evaluations per layer, each requiring
a lookup table evaluation as described in Section 2.4.2.. Hence we have:

number of scaling gates:
d−1∑
i=0

k(m+ 2ki)2 ≤ kd(m+ 2kd)2

number of activation gates:

d−1∑
i=0

(m+ 2k(i+ 1))2 ≤ d(m+ 2kd)2

As a result, we get the following comparison table:

Gate Type Normal FHE Our Implementation

Activation Functions on Encrypted dn2 d(m+ 2kd)2

Multiplication Clear and Encrypted kdn2 kd(m+ 2kd)2

Addition Clear and Encrypted dn2 d(m+ 2kd)2

Since the bottleneck is found in the activation functions over encrypted data, we

expect to get a speedup of around (m+2kd)2

n2 . For more explicit results, for a filter of size
3x3, a Region of Interest of size 256x256, a CNN of depth 10, and an original image of

size 1024x1024, we obtain the speedup of (256+2·3·10)2
10242

∼ 1/9

5 Deployability

Our algorithm was designed with practical deployment in mind, and we developed a full
implementation plan tailored to the Concrete framework [26], one of the most promising

8

FHE libraries currently available. Our core idea, combining an encrypted m×m region
of interest with a plaintext n × n background, fits naturally within Concrete’s hybrid
encryption model, where function parameters can be individually marked as encrypted
or clear-text.
However, current limitations in the Concrete framework prevent complete realization of
our design. Specifically, the framework lacks support for dynamic matrix manipulation
and non-square matrix multiplication, either of which would enable inserting encrypted
regions into a larger plain-text input [26]. While our conceptual implementation is
sound, these constraints restrict our ability to run a full end-to-end evaluation at this
time. These limitations highlight areas where future research can be done to unlock
broader classes of privacy-preserving algorithms.
Below, we include a pseudo-code sketch of our approach. It demonstrates how an en-
crypted ROI can be efficiently embedded within a plain-text image using only matrix
multiplications, operations that are friendly to FHE circuit design:

Algorithm 1 Insert Encrypted Matrix Using Matrix Multiplication

Require: model, xclear ∈ Rn×n, xenc ∈ Rm×m, insertion point (h,w)
1: Initialize zero matrices P ∈ Rn×m, Q ∈ Rn×m

2: for i = 0 to m− 1 do
3: P [h+ i, i]← 1
4: end for
5: for j = 0 to m−1 do
6: Q[w + j, j]← 1
7: end for
8: xinserted ← P · xenc ·Q⊤

9: xout ← xclear + xinserted
10: return model(xout)

In addition, Concrete’s compiler-based function evaluation opens the door to partial
execution strategies. More specifically, we can compile the model forward function f
into a circuit C first, then evaluate it partially on xclear in plain-text to obtain a residual
circuit C ′. After that, we perform homomorphic evaluation of C ′ on xenc.
While Concrete does not yet support circuit partial evaluation [26], we believe that this
work provides a clear use case and motivation for adding support for partial circuit eval-
uation and dynamic tensor multiplication in FHE libraries like Concrete.

A separate practical challenge involves identifying which regions of the input should
be considered sensitive. One straightforward approach is to let the user to manually
blur areas they want to be protect. A more robust and automated solution is to run
a lightweight model locally to detect identifiable information (e.g. faces, license plates,
etc.) [27, 28].

6 Application

Our scheme offers a more efficient solution to protecting private user data while using
powerful machine learning models by enabling efficient encrypted inference on sensitive

9

regions of input data. We highlight several promising applications:

6.1 Private Facial Recognition

A common privacy concern in facial recognition systems is the exposure of biometric
data to third-party services [5]. With our selective FHE approach, a user can encrypt
only the region of an image containing a face while keeping the rest of the image in plain
text.

6.2 Medical Imaging and Diagnosis

In medical settings, some parts of an image (e.g., a CT scan or an MRI) may reveal sen-
sitive patient information [4] while other regions may not. Our system enables clinicians
to share encrypted scans with remote diagnostic models that can operate on clear data
and homomorphically evaluate only the protected regions.

6.3 Surveillance Footage Processing

In surveillance scenarios, it is often necessary to identify people or license plates without
exposing their identities broadly [5]. Selective encryption allows systems to encrypt only
these sensitive areas.

6.4 Autonomous Driving

Autonomous vehicles often need to offload computation to cloud services while respecting
privacy [29]. Our approach allows vehicles to encrypt only regions of interest (e.g.,
pedestrians or faces) and send the rest of the scene in plain text.

6.5 Document Redaction and Smart OCR

Documents may contain a mix of sensitive and non-sensitive information. For example,
a scanned legal document might include a person’s SSN alongside public case details.
By encrypting only the sensitive segments, our system can homomorphically extract or
classify redacted data while allowing the rest of the document to be processed normally.

7 Conclusion

In this work, we introduced Encrypt What Matters, a novel method to reduce the compu-
tational cost of fully homomorphic encryption (FHE) inference by selectively encrypting
only the sensitive regions of input data, a strategy we refer to as Region-of-Interest
(ROI) encryption. Our key insight lies in recognizing that in many machine learning
applications, such as facial recognition, medical imaging, and document analysis, where
only parts of the input actually require encryption to preserve privacy. By exploiting the
inherent locality of convolutional neural networks (CNNs), our approach substantially
reduces circuit size, gate count, and inference latency without requiring any modification
or retraining of the underlying model.

We formally analyzed the theoretical benefits of ROI encryption and showed that,
under reasonable assumptions on kernel size and network depth, our method achieves
a multiplicative speedup proportional to the ratio between encrypted and un-encrypted

10

regions. This reduction is especially impactful in settings where only a small portion of
the input contains sensitive information, as demonstrated in our analysis.

Despite its conceptual promise, our attempt to implement this approach using the
Concrete framework was limited by current library constraints, especially the lack of
support for non-square matrix operations and partial circuit evaluation. Nonetheless, our
proposed algorithm is compatible with the design principles of existing FHE compilers
and can be readily integrated once these limitations are addressed.

As FHE continues to evolve toward greater usability and efficiency, we believe ROI
encryption offers a practical middle ground: preserving strong privacy guarantees where
necessary, while enabling tractable deployment of machine learning models in real-world,
latency-sensitive settings. Future work will focus on extending this approach to more
general architectures and exploring automated mechanisms for identifying sensitive re-
gions in unstructured data.

11

8 Who did what

Ali: Came up with the original idea and attempted several times to implement the code
using concrete but did not end up working. In addition, he wrote the Approach section,
the Deployability section, as well as parts of the introduction.

Juan: Surveyed existing bibliography. Understood and share with the teammates the
theory behind the scheme that was being used for the implementation, as well as pointed
out the bottlenecks and areas that could be improved. Additionally wrote the Prelimi-
naries section and part of the introduction.

Jimmy: Calculated the theoretical speedup and wrote its section in the paper. Also
worked on attempting to implement the code by trying to obtain the circuit of the CNN
and change it accordingly.

Ana: Found open source implementations of programmable bootstrapping and tried
some of them but only concrete had a working Python environment. She wrote the
application part of this paper and helped with the introduction.

12

References

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[2] OpenAI, “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023. Ac-
cessed: 2025-05-13.

[3] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S.
Bernstein, J. Bohg, A. Bosselut, E. Brunskill, E. Brynjolfsson, S. Buch, D. Card,
R. Castellon, N. Chatterji, A. Chen, K. Creel, J. Q. Davis, D. Demszky, C. Donahue,
M. Doumbouya, E. Durmus, S. Ermon, J. Etchemendy, K. Ethayarajh, L. Fei-Fei,
C. Finn, T. Gale, L. Gillespie, K. Goel, N. Goodman, S. Grossman, N. Guha,
T. Hashimoto, P. Henderson, J. Hewitt, D. E. Ho, J. Hong, K. Hsu, J. Huang,
T. Icard, S. Jain, D. Jurafsky, P. Kalluri, S. Karamcheti, G. Keeling, F. Khani,
O. Khattab, P. W. Koh, M. Krass, R. Krishna, R. Kuditipudi, A. Kumar, F. Lad-
hak, M. Lee, T. Lee, J. Leskovec, I. Levent, X. L. Li, X. Li, T. Ma, A. Malik,
C. D. Manning, S. Mirchandani, E. Mitchell, Z. Munyikwa, S. Nair, A. Narayan,
D. Narayanan, B. Newman, A. Nie, J. C. Niebles, H. Nilforoshan, J. Nyarko,
G. Ogut, L. Orr, I. Papadimitriou, J. S. Park, C. Piech, E. Portelance, C. Potts,
A. Raghunathan, R. Reich, H. Ren, F. Rong, Y. Roohani, C. Ruiz, J. Ryan, C. Ré,
D. Sadigh, S. Sagawa, K. Santhanam, A. Shih, K. Srinivasan, A. Tamkin, R. Taori,
A. W. Thomas, F. Tramèr, R. E. Wang, W. Wang, B. Wu, J. Wu, Y. Wu, S. M.
Xie, M. Yasunaga, J. You, M. Zaharia, M. Zhang, T. Zhang, X. Zhang, Y. Zhang,
L. Zheng, K. Zhou, and P. Liang, “On the opportunities and risks of foundation
models,” arXiv preprint arXiv:2108.07258, 2021.

[4] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for health-
care: review, opportunities and challenges,” Briefings in Bioinformatics, vol. 19,
no. 6, pp. 1236–1246, 2018.

[5] C. Garvie, A. Bedoya, and J. Frankle, “The perpetual line-up: Unregulated police
face recognition in america,” tech. rep., Georgetown Law Center on Privacy &
Technology, October 2016. Accessed: 2025-05-13.

[6] J. Xu, Z. Li, W. Chen, Q. Wang, X. Gao, Q. Cai, and Z. Ling, “On-device lan-
guage models: A comprehensive review,” arXiv preprint arXiv:2409.00088, 2024.
Accessed: 2025-05-13.

[7] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud:
Exploring information leakage in third-party compute clouds,” in Proceedings of the
16th ACM Conference on Computer and Communications Security, (New York, NY,
USA), pp. 199–212, Association for Computing Machinery, 2009.

[8] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, “ngraph-he: a graph com-
piler for deep learning on homomorphically encrypted data,” in Proceedings of the
16th ACM international conference on computing frontiers, pp. 3–13, 2019.

[9] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in STOC ’09: Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing, pp. 169–
178, 2009.

13

[10] N. Neda, A. Ebel, B. Reynwar, and B. Reagen, “Ciflow: Dataflow analysis
and optimization of key switching for homomorphic encryption,” arXiv preprint
arXiv:2311.01598, 2023. Accessed: 2025-05-13.

[11] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri, “Activation functions in deep learn-
ing: A comprehensive survey and benchmark,” arXiv preprint arXiv:2109.14545,
2022. Accessed: 2025-05-13.

[12] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arith-
metic of approximate numbers,” in Advances in cryptology–ASIACRYPT 2017: 23rd
international conference on the theory and applications of cryptology and infor-
mation security, Hong kong, China, December 3-7, 2017, proceedings, part i 23,
pp. 409–437, Springer, 2017.

[13] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing,
“Cryptonets: Applying neural networks to encrypted data with high throughput
and accuracy,” in Proceedings of The 33rd International Conference on Machine
Learning, pp. 201–210, 2016.

[14] A. Brutzkus, A. Elisha, Y. Goldberg, and R. El-Yaniv, “Low latency privacy pre-
serving inference,” in Proceedings of the 36th International Conference on Machine
Learning, pp. 812–821, 2019.

[15] F. Bourse, M. Minelli, M. Minihold, and P. Paillier, “Fast homomorphic evaluation
of deep discretized neural networks,” in Advances in Cryptology – ASIACRYPT
2018 (D. Wang and M. Yung, eds.), vol. 11274 of Lecture Notes in Computer Science,
pp. 483–512, Springer, 2018.

[16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE: Fast fully homo-
morphic encryption over the torus.” Cryptology ePrint Archive, Paper 2018/421,
2018.

[17] I. Chillotti, M. Joye, and P. Paillier, “Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks.” Cryptology ePrint Archive, Paper
2021/091, 2021.

[18] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster cryp-
tonets: Leveraging sparsity for real-world encrypted inference,” arXiv preprint
arXiv:1811.09953, 2018. Accessed: 2025-05-13.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Sys-
tems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds.),
pp. 1097–1105, Curran Associates, Inc., 2012. Accessed: 2025-05-13.

[20] W. Luo, Y. Li, R. Urtasun, and R. Zemel, “Understanding the effective receptive
field in deep convolutional neural networks,” in Advances in Neural Information
Processing Systems 29 (NeurIPS 2016), pp. 4898–4906, Curran Associates, Inc.,
2016. Accessed: 2025-05-13.

[21] O. Regev, “On lattices, learning with errors, random linear codes, and cryptogra-
phy,” in STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing, 2005.

14

[22] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic encryption
without bootstrapping.” Cryptology ePrint Archive, Paper 2011/277, 2011.

[23] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for module lat-
tices,” Designs, Codes and Cryptography, vol. 75, no. 3, pp. 565–599, 2015.

[24] C. Marcolla, V. Sucasas, M. Manzano, R. Bassoli, F. H. Fitzek, and N. Aaraj,
“Survey on fully homomorphic encryption, theory, and applications.” Cryptology
ePrint Archive, Paper 2022/1602, 2022.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[26] Zama, “Concrete: A rust-based fully homomorphic encryption framework.” https:
//github.com/zama-ai/concrete, 2023. Documentation available at https:
//docs.zama.ai/concrete. Accessed: 2025-05-13.

[27] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint
arXiv:1804.02767, 2018. Accessed: 2025-05-13.

[28] T. Orekondy, M. Fritz, and B. Schiele, “Connecting pixels to privacy and utility:
Automatic redaction of private information in images,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8466–8475,
IEEE, 2018. Accessed: 2025-05-13.

[29] R. Hamon, H. Junklewitz, J. I. Sanchez Martin, D. Fernandez Llorca,
E. Gomez Gutierrez, A. Herrera Alcantara, and A. Kriston, “Artificial intelligence
in automated driving: An analysis of safety and cybersecurity challenges,” Tech.
Rep. JRC127189, European Commission, Joint Research Centre, 2022. Accessed:
2025-05-13.

15

https://github.com/zama-ai/concrete
https://github.com/zama-ai/concrete
https://docs.zama.ai/concrete
https://docs.zama.ai/concrete

	Introduction
	Preliminaries
	Notation
	Learning With Errors Assumption (LWE)
	Programmable Bootstrapping
	Blind Rotations
	Look-up Table Evaluation

	Our Approach
	Theoretical Speed up
	Deployability
	Application
	Private Facial Recognition
	Medical Imaging and Diagnosis
	Surveillance Footage Processing
	Autonomous Driving
	Document Redaction and Smart OCR

	Conclusion
	Who did what

