
RADIUS Accounting Considered Harmful

Andrew Lee, Selena Qiao, Maggie Yao

Abstract — The Remote Authentication Dial-In
User Service (RADIUS) protocol forms a founda-
tional component of modern-day networking in-
frastructure. Although RADIUS has been in use
for over three decades, its accounting mechanism
responsible for logging data such as session usage
and billing information remains a critical com-
ponent in widely-adopted infrastructure, supported
by vendors like Microsoft, Cisco, Nokia, and Ora-
cle. This paper presents a practical exploration of
a cryptographic attack against RADIUS Account-
ing, building upon the Blast-RADIUS vulnerability
that exploited flaws in RADIUS Authentication
[1]. By leveraging a chosen-prefix MD5 collision,
we demonstrate how an attacker with man-in-the-
middle capabilities can forge a valid Accounting-
Request packet without knowledge of the shared
secret. Using the HashClash framework [2], we
show that collisions can be computed in under
eight hours when multiple gibberish attributes are
used. Our work outlines the feasibility of this at-
tack, identifies practical challenges, and proposes
mitigations to strengthen the integrity of RADIUS
Accounting.

I. INTRODUCTION

RADIUS is a networking protocol designed to pro-
vide authentication, authorization, and accounting
(AAA) and is the gold standard for remote access
network users and administrators regarding net-
worked devices. The prevalence of RADIUS can-
not be understated as it was created in 1991 but is
now supported by “essentially every switch, router,
access point, and VPN concentrator product sold
in the last twenty years” [3]. RADIUS is widely
used by major Internet Service Providers, telecom-
munications companies, eduroam, and many other
services.

The accounting aspect of RADIUS is intended to
capture data for the purposes of network moni-
toring and billing [4]. Therefore, large enterprises
rely on it to maintain accurate accounting charge
information. For instance, RADIUS Accounting
is utilized in the Oracle Communications Session
Border Controller (OCSBC), an industry-leading
session border controller (SBC) for fixed line,
mobile, and over-the-top (OTT) services [5]. Mi-
crosoft, Cisco, and Nokia all support RADIUS
Accounting in their products to provide customers
with robust network usage monitoring and man-
agement capabilities [1].

A. RADIUS Accounting Attack Overview

As aforementioned, RADIUS Accounting is de-
signed to record information for network monitor-
ing and billing purposes [4]. In this protocol, an
end user first connects to a Network Access Server
(NAS), which periodically sends Accounting-
Request packets to the RADIUS server. To ensure
the integrity and authenticity of each Accounting-
Request, the packet includes a Response Authen-
ticator, a MD5 hash computed over the packet
header, attributes, and shared secret, in that specific
order. Our attack will force the RADIUS server to
log an Accounting-Request packet with a forged
attribute without any knowledge of the shared
secret.

Our RADIUS Accounting attack builds on the
Blast-RADIUS attack described in the paper RA-
DIUS/UDP Considered Harmful, published in June
of last year [1], which targeted RADIUS Authen-
tication. While that paper only briefly outlined
a potential attack on RADIUS Accounting, we
expand upon their idea. Our attack model assumes
man-in-the-middle network access is possible, a
plausible threat given that most RADIUS traffic
is still transmitted over UDP despite longstanding
security concerns.

Our attack begins when the end-user adversary
triggers the NAS to generate an Accounting-
Request packet containing carefully crafted gib-
berish attributes. Before this packet reaches the
RADIUS server, the adversary intercepts and re-
places it with a malicious Accounting-Request that
includes a forged attribute of their choosing, along
with a different set of gibberish attributes. These
two versions of gibberish attributes are precom-
puted to produce a matching Request Authentica-
tor using an MD5 chosen-prefix collision, allowing
the RADIUS server to accept the forged packet as
the server believes it to be valid.

By developing a script based on the open-source
HashClash framework [2], we estimate that com-
puting a collision using only one gibberish at-
tribute would take at least ten days. However, when
using two or more gibberish attributes, we were
able to compute a collision in approximately eight
hours. Including multiple attributes requires the
use of a specialized technique previously devel-
oped to fix byte values in the gibberish as a result
of the presence of headers within each attribute.
[1].

Although we do not present a concrete attack on
a specific RADIUS implementation due to limita-
tions discussed later, we demonstrate that such an
attack is indeed feasible in this paper as well as
provide potential mitigations to prevent our attack.

B. Contributions
Our contributions regarding our project are as
follows:

1) Conducting a practical evaluation of the RA-
DIUS Accounting attack implementation

2) Identifying and analyzing the challenges and
limitations involved in executing the attack

3) Measuring the computational time required
to generate the collision on which the attack
relies

II. BACKGROUND

As previously mentioned, our attack builds on the
RADIUS Authentication vulnerability identified in
the Blast-RADIUS attack. The following sections
will summarize their approach and provide an
overview of RADIUS Accounting to set-up the
implementation of our attack.

A. RADIUS Authentication

RADIUS operates using a client/server model,
where the client forwards user credentials and con-
nection requests to a centralized RADIUS server,
which performs authentication, authorization, and
accounting. In regard to authentication, the user
will input their credentials to send to the RADIUS
Client who will send an Access-Request to the
RADIUS Server [6]. The RADIUS Server will
check the credentials and send an Access-Accept
or Access-Reject packet back accordingly. The
RADIUS Client will then successfully allow the
user to login depending on the packet received.

B. Response Authenticator

In order to determine the legitimancy of Access-
Reject and Access-Accept packets, the packet
will include a Response Authenticator which
is computed as a MD5 hash, specifically
MD5(Code||ID||Len||ReqAuth||Attributes||Secret).
With the exception of the ReqAuth and the Secret,
all the information is copied from the Access-
Reject and Access-Accept packet. The ReqAuth
is taken from the original Access-Request
packet which represents a random 16-byte nonce
generated for each authentication session attempt.
The Secret is a shared secret previously agreed
upon between the RADIUS client and server.

C. MD5 Collisions

The MD5 protocol was designed in 1991 through
utilizing Merkle-Damgard to iteratively process the
input in blocks of 512 bits to compress to a final
128-bit output [7]. Although MD5 was shown to be
insecure in 2004 when researchers demonstrated
a practical collision using a birthday attack [8],
it continues to be used in the RADIUS protocol
due to its longstanding integration and widespread
legacy deployment.

Further developments led to the MD5 chosen-
prefix attack in which given fixed prefixes P1

and P2, it’s possible to produce gibberish G1 and
G2 such that MD5(P1||G1) = MD5(P2||G2) [9].
The interesting part of the attack is that anything
that comes after the gibberish, as long as it’s
identical, will continue to be a collision. There-
fore, MD5(P1||G1||S) and MD5(P2||G2||S) will
continue to produce a collision.

Fig. 1: A RADIUS accounting packet and Request
Authenticator

D. Blast-RADIUS

The Blast-RADIUS attack enables an adversary
to bypass RADIUS Authentication and gain ac-
cess using invalid credentials, potentially even as
an administrator, as illustrated in Figure 2. As
mentioned in the previous section, MD5 has long
been known to be insecure, and the crux of the
attack is a MD5 chosen-prefix collision regarding
the Request Authenticators of the Access-Reject
and Access-Accept packets through a man-in-the-
middle attack.

The adversary will first input invalid creden-
tials to the RADIUS client who then sends
an Access-Request to the RADIUS server.
The adversary will then intercept the Access-
Request and compute RejectGib and Accept-
Gib such that MD5(AcceptPrefix ∥AcceptGib) =
MD5(RejectPrefix ∥RejectGib) to obtain identical
Response Authenticators. As demonstrated above,
as long as the shared secret comes after the gib-
berish, the two computed Response Authenticators
will continue to be identical. To allow for enough

space for the chosen-prefix collision, the gibber-
ish is computed through the addition of Proxy-
State attributes. A Proxy-State attribute includes
a one-byte code, a one-byte length field, and a
data string of up to 253 arbitrary bytes. Proxy-
State attribute were chosen due to the property
that they “MUST be copied unmodified and in
order into the response packet” [6]. It is important
that this computation has to be done online due
to the 16-byte random nonce generated for each
authentication session.

The adversary will then send an Access-Request
packet with the appended RejectGib. Then when

the RADIUS server rejects the invalid creden-
tials, it’ll send an Access-Reject packet with the
RejectGib appended. The adversary will intercept
the transmission once more and instead send the
RADIUS client an Access-Accept packet with the
AcceptGib, copying over the computed Request
Authenticator found in the Access-Reject packet.
As a result, the RADIUS client will accept the
Access-Accept packet as valid because the Request
Authenticator appears to be correct and the adver-
sary can successfully authenticate.

E. RADIUS Accounting

In comparison to RADIUS Authentication, RA-
DIUS Accounting is used for network monitoring,
usage statistics, and billing users accurately [10].
The process begins when a user connects, and
the NAS sends an ”Accounting Start” Accounting-
Request packet to the RADIUS server with ses-
sion details like user ID and IP address. During
the session, the NAS may send ”Interim Update”
Accounting-Request packets with current usage
statistics such as the username, number of input
packets, session duration, etc. When the session
terminates, an ”Accounting Stop” Accounting-
Request packet is sent with final data on time, us-
age, and disconnection reason. The client will send
Accounting-Request packets until the RADIUS
server acknowledges receipt with an Accounting-
Response packet and the server will store the
relevant packets in its log.

Similarly to RADIUS Authentication, the
Accounting-Request packet will also include a
Request Authenticator to prevent forgery of the
packets. The only difference is that instead of a
random 16-byte nonce for the session, 0128 in an
attempt to prevent attacks like the one described
in this paper. The MD5 hash therefore looks like
MD5(Code ∥ ID ∥Len ∥ 0128 ∥Attributes ∥Secret)
as demonstrated in Figure 1. If the RADIUS
client detects that the Response Authenticator is
invalid, it will simply discard the packet.

F. FreeRADIUS

The implementation that we base our evaluation
upon is called FreeRADIUS [11]. Almost if not all
RADIUS servers are based on one of the follow-
ing five implementations: FreeRADIUS, Radiator,

Fig. 2: The attack flow illustrated in Blast-RADIUS, with the image sourced from their paper. The
adversary enters invalid credentials (1) and then mounts a man-in-the-middle attack (2) in which
Response Authenticator collision gibberish is computed online (3) and inserted in the Access-Request
(4). Although the server rejects the invalid credentials (5), the adversary intercepts the Access-Reject,
replacing it with an Access-Accept containing the forged gibberish (6). By exploiting the same Response
Authenticator, the client unknowingly authenticates the adversary due to the collision (7).

Cisco, Microsoft, and Nokia [1]. We chose to
evaluate the FreeRADIUS implementation because
it is the most widely used of the five RADIUS
implementations and is open source.

III. RADIUS ACCOUNTING ATTACK

Because the Response Authenticator in a RADIUS
accounting packet is essentially the same format as
that of an Access-Accept or Access-Reject packet,
these packets are susceptible to the same type of
forgery attack. In this section, we describe the gen-
eral attack flow, practical challenges of extending
this attack identified in the BlastRADIUS paper,
and how these challenges can be overcome.

A. Attack Flow
In our attack as demonstrated in Figure 3, an
attacker with control over the network can forge
a RADIUS accounting request containing invalid
logs. The attack flow differs from that of the
original attack because the objective is to forge
a request and not a response. The attacker must
compute two sets of collision gibberish, one for
a legitimate accounting request, and one for the
forged accounting request, then replace the legiti-
mate request with the forged one. We then ignore
the responses from the RADIUS server; they are
no longer important to the attack.

A sketch of the full attack is as follows. First, the
attacker computes a pair of collision bytes between
the legitimate and forged accounting requests.
Then, the attacker triggers a RADIUS client such

that it generates the legitimate accounting packet,
but intercepts this packet on the network and
replaces it with the forged accounting request with
the same authenticator. The RADIUS server will
recompute the authenticator with the forged packet
fields and validate the integrity of the message.

B. Timeout
One benefit of this modified attack flow is that
we are not subject to the same timeout as the
original BlastRADIUS attack. A big challenge in
the original paper was computing an MD5 colli-
sion within a few minutes in order to forge an
Access-Accept before the authentication timeout.
This required many machines to work in parallel,
as well as modifying collision-finding to operate
on distributed compute.

There is no restriction on the time at which an ac-
counting request can be sent. (However, most im-
plementations of RADIUS will include the times-
tamp of the request as a request attribute.) This
greatly reduces the amount of computational power
necessary to complete this attack, and an attacker
can take a longer time to compute a collision while
still being able to complete the attack successfully.

C. Request Triggering
In this attack flow, the attacker must trigger the
client to send a legitimate RADIUS accounting
request. This is in contrast to the original attack,
in which the attack focuses on the response. This
made it possible to insert arbitrary collision bytes

Fig. 3: The flow of our attack. The adversary precomputes an MD5 collision then triggers a failed login,
which generates a legitimate accounting request. The adversary then intercepts that packet and sends
the forged packet.

in the Proxy-State attribute because these bytes
may be ignored by the server upon receipt but
must be included in the response. As stated in the
original paper, this property cannot be exploited by
the RADIUS Accounting attack because this attack
focuses on forging a request, and not a response.

Instead, any attributes that contain collision bits
must be populated as a result of triggering a
RADIUS client to send a legitimate request – this
is so that we can obtain the Request Authenticator
of the packet, which contains the shared secret as
part of its pre-image.

This significantly limits the types RADIUS at-
tributes that we can populate with gibberish.
Proxy-State is no longer a viable option because no
reasonable implementation of RADIUS would al-
low a user to populate the attribute with gibberish.
One viable option identified by the paper is to use
the username field – this can be very reasonably
triggered by attempting a login, for example.

We verify in our evaluation that the username
field likely provides enough space (253 bytes) to
compute a collision, especially considering that the
collision computation is not subject to a timeout
constraint.

There are several other RADIUS accounting at-
tributes that may be candidates for storing collision
gibberish because they can store up to 253 bytes
in their value (any string type attribute is in theory
a candidate). These attributes can be combined
to form a collision by fixing header bytes, as
described in the next section. However, how or
whether these fields are populated will be highly

dependent on the implementation and likely hard
to manipulate.

The authors suggest that the attacker can either
predict or cause the message the RADIUS client
will send, then compute a collision based on this
prediction. However, purely anticipating a RA-
DIUS request from the client (like a periodic
update) will likely not work. This is because the
attack requires including collision gibberish in the
original request, which cannot happen by passively
predicting packets.

D. Packet Prediction

A related practical challenge of this attack iden-
tified by the original authors is packet predic-
tion. Recall that in this attack flow, the collision
gibberish must be computed before the original
accounting packet is actually sent. This implies
that a prefix of the packet content must be known
prior to the packet actually being sent.

This prediction may be complicated, as packet
attributes include automatically generated times-
tamps and session IDs, which are typically
implementation-dependent. However, as we will
note in the next section, these attributes need not
be predicted.

In the case where these attributes must be pre-
dicted, the attack remains feasible, though more
challenging. The attacker would first need to snoop
an active RADIUS session to capture the session
ID. Next, they would compute a collision using the
two prefixes, based on a preselected timestamp in
the future. The legitimate request would then need

to be triggered precisely at that time. Since times-
tamps are measured in seconds, accurate timing is
reasonably achievable. This version of the attack
would also depend on the session timeout to ensure
the same session ID remains valid; however, this
timeout is typically longer than the authentication
timeout used in the original attack.

E. Request Triggering

The last practical challenge identified by the origi-
nal authors is that only attributes that come before
the collision gibberish can be forged. This is
because once an MD5 collision is generated, any
bytes that come after must be identical in order for
the two messages to continue colliding (otherwise
the state diverges again).

We have found that the ordering of these attributes
is not specified by the RADIUS protocol and is in-
stead implementation dependent. In FreeRADIUS,
the username attribute, which contains the collision
gibberish, comes after the attributes we want to
forge; therefore, the issue of attribute ordering is
avoidable.

Another feature of FreeRADIUS is that it always
places the session ID and the timestamp after all
other client-generated attributes. Recall that these
are the two attributes that make packets hard to
predict. However, if these attributes come after the
collision gibberish, they need not be included in
the predicted prefix at all. Instead, the attacker can
merely copy the exact same timestamp and session
ID off of the legitimate packet and thus maintain
the MD5 collision without any extra work.

F. Username Validity

One issue with inserting gibberish into the user-
name is that it makes the username invalid; this
means that it may be harder to forge meaningful
logs. However, it is possible that there exists some
vulnerable implementation that parses usernames
until a null byte, yet when computing Request
Authenticators includes every byte of the attribute.
The paper references Marlinspike and Kaminsky’s
null byte attack against SSL/TLS as an example
of this type of attack in the past [12].

While this would mean that this attack would only
work against such vulnerable implementations, we

note that it is still possible to forge meaningful
requests that are not necessarily attached to a
user. In addition, as mentioned before, it may be
possible to insert gibberish into attributes other
than the username, which removes this limitation.

G. Final Attack

An example of a practically feasible attack on
RADIUS accounting is as follows. The attacker’s
goal will be to forge accounting requests for some
user Bob such that the RADIUS server believes
Bob network’s usage is unusually high by forging
the Acct-Input-Gigawords field, a field essentially
used to track the amount of data received by the
user from the network, increasing the billing cost
significantly. First, the attacker determines a valid
trigger for the RADIUS client that allows us to
insert collision gibberish. For instance, the attacker
could trigger a failed login for Bob by attempting
to authenticate as Bob with the wrong password,
which will generate a RADIUS accounting request
from the RADIUS client.

The attacker constructs the packet prefix for the
packet that would be sent, then constructs the
prefix for the desired packet with a large Acct-
Input-Gigawords value. The two prefixes should
both include Bob\0 in the username field so that
the request is attached to the user Bob. Then, he
computes a four-block MD5 collision of the two
prefixes and inserts the rest of the gibberish in the
remaining username attribute space.

Finally, the attacker triggers the failed login, inter-
cepts the request from the client, and replaces it
with the forged request.

IV. MD5 COLLISION COMPUTATION

To generate MD5 collisions for a practical appli-
cation, we used HashClash, an open-source frame-
work designed for constructing collisions against
MD5 [2]. The process exploits MD5’s structural
vulnerabilities via a two-phase approach that lever-
ages a variant of the birthday attack followed by
differential path construction.

The first step is to generate a near collision, a
pair of message blocks that produce internal MD5
states that differ in only a few bits. This phase re-
lies on the classic birthday paradox: by generating

and hashing a large number of message prefixes
with chosen differences, HashClash attempts to
find pairs whose MD5 state differences fall within
a narrow subspace that makes the second step
easier. This step is computationally intensive but
parallelizable.

Once a near collision is found, HashClash transi-
tions to the path-finding phase. Here, it searches
for a valid differential path that propagates the
small initial differences through the MD5 compres-
sion function, ultimately resulting in an actual hash
collision. This involves adding a carefully crafted
sequence of additional message blocks.

There’s a tradeoff between the time spent finding
a near-collision, the time spent finding a collision
path, and the number of message blocks required.
Finding a shorter path may take significantly
longer computational time, while accepting longer
paths (i.e., more added blocks) makes the search
easier but increases the final payload size.

An important constraint when extending the col-
lision chain is the format of the message blocks.
In the specific context we were working in, ev-
ery group of four blocks after the initial colli-
sion needed to start with two fixed bytes of our
choosing. This was due to protocol or file format
requirements (e.g., attribute headers that had to
conform to certain patterns). As a result, each
subsequent collision extension had to satisfy not
just the MD5 differential requirements, but also
these structural prefix constraints.

We developed a script in HashClash to fix these
bytes, adapting the framework to meet the specific
constraints of our application. However, imposing
prefix constraints on blocks narrows the space of
valid solutions, making path-finding more com-
plex.

V. EVALUATION

A. Attack Computational Time

The computational effort required to generate a
successful MD5 chosen-prefix collision depends
heavily on the amount of message space available
for injecting controllable data. In our setting, this
space corresponds to the number and size of at-
tribute fields we can exploit. Each attribute permits

up to 253 bytes of arbitrary data, equivalent to
4 MD5 message blocks. Thus, the total number
of attributes we can use directly translates into
how many blocks we can devote to satisfying
the collision path requirements. For all of our
evaluations, we performed them using a single
machine.

If we are limited to only a single attribute—such
as a username field—this restricts us to just 4
blocks after the shared prefix. Under this con-
straint, the space of possible message differences
and differential paths narrows significantly, making
the search for a valid collision far more time-
consuming. Based on our estimates and practical
trials, generating a chosen-prefix collision under
these constraints would take at least 10 days on
a single machine, and likely significantly more
depending on hardware and optimization.

Nevertheless, previous experiments have shown
that with increased computational power, it is pos-
sible to compute a chosen-prefix collision within a
single block. In 2009, Stevens et al. demonstrated
the feasibility of generating a chosen-prefix MD5
collision to forge an adversarial TLS certificate
authority in just 204 bytes [13]. This was achieved
by leveraging 200 Sony PlayStation 3 consoles
running in parallel, completing the task in approx-
imately 28 hours of computation.

In contrast, if two attributes are avail-
able—yielding 8 controllable blocks—we
observed a dramatic improvement in performance.
In this case, we successfully computed a chosen-
prefix collision in approximately 8 hours. These
results highlight the sharp computational tradeoff
between available payload space and collision
generation time.

B. Limitations
While our attack demonstrates the feasibility
of forging RADIUS accounting requests using
chosen-prefix MD5 collisions, it is subject to sev-
eral practical limitations that constrain its applica-
bility in real-world scenarios.

To obtain the Request Authenticator and ensure
valid packet formatting, the attacker must trigger
a legitimate RADIUS accounting request that in-
cludes the collision gibberish. This limits the set

of attributes into which gibberish can be inserted.
So far, we have found the username field to be
the only viable candidate—users can often supply
arbitrary usernames, and the field typically sup-
ports up to 253 bytes. Other attributes like Proxy-
State are either server-controlled or impractical to
manipulate in a meaningful way.

The attacker must accurately predict the content
of the accounting request prior to its generation,
including all header and attribute values up to the
collision point. This includes fields like timestamps
and session IDs, which are often implementation-
dependent and may vary across deployments.
While some of these fields may come after the
collision blocks and can therefore be ignored, this
ordering is not guaranteed and must be verified on
a per-implementation basis.

MD5 collisions require both message prefixes to
diverge and then reconverge. Therefore, any forged
attributes must appear before the collision blocks.
Attributes that come after the collision blocks
must be identical across both the legitimate and
forged messages, which severely limits forgery
capabilities. Since RADIUS does not specify a
canonical attribute ordering, this again depends on
implementation behavior.

Each attribute can hold at most 253 bytes, equiva-
lent to four MD5 blocks. Since MD5 chosen-prefix
collisions require multiple such blocks to construct
a valid differential path, the number of available
attributes directly limits the feasibility and speed
of the attack. At this point, we have only found one
attribute could be reasonably filled with gibberish,
significantly increasing the computational cost of
finding a collision.

Taken together, these limitations mean that while
the attack is feasible under controlled condi-
tions—especially against certain configurations
like FreeRADIUS—it may not generalize to all
RADIUS deployments without significant cus-
tomization or inside knowledge of the target sys-
tem’s behavior.

VI. MITIGATIONS

The following subsections will discuss potential
avenues regarding mitigating the RADIUS Ac-
counting attack. These strategies aim to enhance

the protocol’s security and safeguard it against
potential future attacks as well.

A. Non-Mitigation: Increasing Secret Length

Although increasing the length of the secret is a
common method for strengthening the security of
other schemes, it does not affect our attack. This is
because the length of the secret is irrelevant—our
attack relies on the fact that the secret always
follows the gibberish.

B. Short-Term Mitigation: Inspecting Logs

The simplest strategy does not attempt to stop the
attack but rather to detect it. Since all informa-
tion related to the accounting session is stored
on the RADIUS server, typically for later billing
inspection, one can simply review or have a script
to filter the logs to identify suspicious activity.
This is because our current implementation will
generate gibberish in the literal sense to find the
MD5 collision. However, it remains plausible that
future advancements in MD5 collision techniques
could produce intelligible gibberish, undermining
the effectiveness of this mitigation strategy.

C. Non-Mitigation: Deprecating MD5

While the most obvious mitigation may be to
eliminate MD5 entirely in favor of secure hash
functions like SHA-256, such measures are largely
incompatible with existing implementations due to
the difficulty of altering RADIUS’s cryptographic
practices. This mitigation would be essentially
utilizing an entirely new protocol. The below mit-
igations are more effective while maintaining the
RADIUS protocol.

D. Short-Term Mitigation: Message-Authenticator

The recommended short-term mitigation that was
implemented as a result of the RADIUS/UDP
Considered Harmful paper is to require a Message-
Authenticator as the first attribute [1]. The
Message-Authenticator as described in RFC 2869
is an optional attribute that computes an HMAC-
MD5 over the entirety of the packet [14]. Cur-
rently, HMAC-MD5 is considered secure, un-
like MD5, assuming the underlying pseudorandom
functions are themselves secure [15]. Therefore,
it will be impossible to run our attack on the

modified protocol as the HMAC-MD5 attribute
will be effectively random.

The crucial requirement is that the RADIUS server
must always include the Message-Authenticator,
and the RADIUS client must always verify it. As
a result of the aforementioned paper, all known
RADIUS implementations have incorporated the
above mitigation into their protocols, preventing
our attack [16]. However, the mitigation remains
vulnerable to a potential downgrade attack, the fea-
sibility of which we leave to future considerations.

E. Long-Term Mitigation: Transport Security

Through transmitting RADIUS data over an en-
crypted and authenticated channel with modern
cryptographic guarantees, the demonstrated attack
can be more effectively prevented. While migrating
to DTLS/TCP and TLS entails substantial infras-
tructure changes, it provides the most robust and
reliable protection against both RADIUS Authen-
tication and Accounting attacks, and is strongly
recommended for future deployments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present an attack that allows
adversaries to forge RADIUS Accounting logs
through a man-in-the-middle approach that lever-
ages an MD5 chosen-prefix collision. Our evalua-
tion demonstrates that while the attack is practical,
it faces several limitations. Specifically, successful
execution depends on addressing challenges re-
lated to timing, attribute ordering, and variations
in implementation behavior. We also analyze the
computational effort required to generate the nec-
essary collision, providing a clearer picture of the
attack’s feasibility in real-world scenarios.

For future work, one potential direction is to evalu-
ate the feasibility of a downgrade attack, especially
in environments where the Message-Authenticator
mitigation is currently deployed. It is also critical
to begin migrating RADIUS to more secure trans-
port protocols such as DTLS/TCP and TLS, and to
assess its security in those contexts. Overall, our
project highlights the importance of continually
assessing the security of real-world deployments,
regardless of how long they have been in use, as
longevity does not guarantee continued security.

VIII. CONTRIBUTIONS

All authors contributed equally to brainstorming
project ideas, reading relevant papers, creating the
foundations of the attack, developing the script for
computing the collision, evaluating the limitations
and mitigations, and writing up the final project
report.

IX. ACKNOWLEDGEMENTS

Thank you to our TA Katarina Cheng as well
as Professor Yael Kalai and Professor Henry
Corrigan-Gibbs for their advice and teachings.
Special thanks to Marc Stevens and Miro Haller
of the Blast Radius Attack Team for all their help
with making our project possible!

REFERENCES

[1] S. Goldberg, M. Haller, N. Heninger, M. Milano,
D. Shumow, M. Stevens, and A. Suhl, “RADIUS/UDP
considered harmful,” in Proceedings of the 33rd USENIX
Security Symposium (USENIX Security 24). Philadelphia,
PA, USA: USENIX Association, Aug. 2024, pp. 7429–
7446. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity24/presentation/goldberg

[2] M. Stevens, “Project hashclash - md5 and sha1 cryptanalytic
toolbox,” https://github.com/cr-marcstevens/hashclash, 2009,
accessed: 2025-05-11.

[3] A. DeKok, “Radius and md5 collision attacks,” 2024.
[Online]. Available: https://networkradius.com/assets/pdf/
radius and md5 collisions.pdf

[4] C. Rigney, “Radius accounting,” RFC 2866, June 2000, https:
//datatracker.ietf.org/doc/html/rfc2866.

[5] Oracle Corporation, “Configuring accounting,” 2024,
accessed: 2024-05-12. [Online]. Available: https:
//docs.oracle.com/cd/E95618 01/html/sbc scz810 accounting/
GUID-5D866DB4-8537-4CCC-A1EB-1F649925E9A3.htm#
Configuring-Accounting

[6] C. Rigney, S. Willens, A. Rubens, and W. Simpson, “Re-
mote Authentication Dial In User Service (RADIUS),” https:
//datatracker.ietf.org/doc/html/rfc2865, 2000, rFC 2865.

[7] R. L. Rivest, “The md5 message-digest algorithm,” RFC
1321, April 1992, request for Comments 1321. [Online].
Available: https://www.rfc-editor.org/rfc/rfc1321

[8] X. Wang and H. Yu, “How to break MD5 and other hash
functions,” in Advances in Cryptology - EUROCRYPT 2005,
ser. Lecture Notes in Computer Science, vol. 3494. Springer,
2005, pp. 19–35.

[9] M. Stevens, A. K. Lenstra, and B. de Weger, “Chosen-prefix
collisions for MD5 and colliding X.509 certificates for dif-
ferent identities,” in Advances in Cryptology - EUROCRYPT
2007, ser. Lecture Notes in Computer Science, vol. 4515.
Springer, 2007, pp. 1–22.

[10] NetworkRADIUS, “How does radius accounting
work?” https://networkradius.com/articles/2019/06/05/
how-does-radius-accounting-work.html, June 2019, accessed:
2025-05-11.

[11] The FreeRADIUS Project, “Freeradius,” https:
//www.freeradius.org/, 2025, accessed: 2025-05-11.

https://www.usenix.org/conference/usenixsecurity24/presentation/goldberg
https://www.usenix.org/conference/usenixsecurity24/presentation/goldberg
https://github.com/cr-marcstevens/hashclash
https://networkradius.com/assets/pdf/radius_and_md5_collisions.pdf
https://networkradius.com/assets/pdf/radius_and_md5_collisions.pdf
https://datatracker.ietf.org/doc/html/rfc2866
https://datatracker.ietf.org/doc/html/rfc2866
https://docs.oracle.com/cd/E95618_01/html/sbc_scz810_accounting/GUID-5D866DB4-8537-4CCC-A1EB-1F649925E9A3.htm#Configuring-Accounting
https://docs.oracle.com/cd/E95618_01/html/sbc_scz810_accounting/GUID-5D866DB4-8537-4CCC-A1EB-1F649925E9A3.htm#Configuring-Accounting
https://docs.oracle.com/cd/E95618_01/html/sbc_scz810_accounting/GUID-5D866DB4-8537-4CCC-A1EB-1F649925E9A3.htm#Configuring-Accounting
https://docs.oracle.com/cd/E95618_01/html/sbc_scz810_accounting/GUID-5D866DB4-8537-4CCC-A1EB-1F649925E9A3.htm#Configuring-Accounting
https://datatracker.ietf.org/doc/html/rfc2865
https://datatracker.ietf.org/doc/html/rfc2865
https://www.rfc-editor.org/rfc/rfc1321
https://networkradius.com/articles/2019/06/05/how-does-radius-accounting-work.html
https://networkradius.com/articles/2019/06/05/how-does-radius-accounting-work.html
https://www.freeradius.org/
https://www.freeradius.org/

[12] M. Marlinspike, “Null prefix attacks against
ssl/tls certificates,” https://www.blackhat.
com/presentations/bh-usa-09/MARLINSPIKE/
BHUSA09-Marlinspike-DefeatSSL-PAPER1.pdf, July
2009, black Hat USA.

[13] M. Stevens, A. Sotirov, J. Appelbaum, A. K. Lenstra, D. Mol-
nar, D. A. Osvik, and B. de Weger, “Short chosen-prefix
collisions for md5 and the creation of a rogue ca certificate,”
in CRYPTO, ser. Lecture Notes in Computer Science, vol.
5677. Springer, 2009, pp. 55–69.

[14] W. Willats, C. Rigney, and P. R. Calhoun, “Radius ex-
tensions,” RFC 2869, 2000, https://www.rfc-editor.org/rfc/
rfc2869.

[15] M. Bellare, “New proofs for nmac and hmac: Security
without collision resistance,” Journal of Cryptology, vol. 28,
no. 4, pp. 844–878, Oct. 2015. [Online]. Available:
https://doi.org/10.1007/s00145-014-9187-1

[16] S. Goldberg, M. Haller, N. Heninger, M. Milano, D. Shu-
mow, M. Stevens, and A. Suhl, “Blast-radius,” https://www.
blastradius.fail/, 2024, accessed: 2025-05-11.

https://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-PAPER1.pdf
https://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-PAPER1.pdf
https://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/BHUSA09-Marlinspike-DefeatSSL-PAPER1.pdf
https://www.rfc-editor.org/rfc/rfc2869
https://www.rfc-editor.org/rfc/rfc2869
https://doi.org/10.1007/s00145-014-9187-1
https://www.blastradius.fail/
https://www.blastradius.fail/

	Introduction
	RADIUS Accounting Attack Overview
	Contributions

	Background
	RADIUS Authentication
	Response Authenticator
	MD5 Collisions
	Blast-RADIUS
	RADIUS Accounting
	FreeRADIUS

	Radius Accounting Attack
	Attack Flow
	Timeout
	Request Triggering
	Packet Prediction
	Request Triggering
	Username Validity
	Final Attack

	MD5 Collision Computation
	Evaluation
	Attack Computational Time
	Limitations

	Mitigations
	Non-Mitigation: Increasing Secret Length
	Short-Term Mitigation: Inspecting Logs
	Non-Mitigation: Deprecating MD5
	Short-Term Mitigation: Message-Authenticator
	Long-Term Mitigation: Transport Security

	Conclusion and Future Work
	Contributions
	Acknowledgements
	References

