6.5610 Applied Cryptography Project Report
Hybrid Post-Quantum Variation of OpenID

Zitong Chen Shreya Thipireddy
Chon Hou (Jophy) Ye
{zitongc, shreyat, jophyyjh}@mit.edu

May 14, 2025

Abstract

With the dawn of quantum computing, widely deployed cryptographic authen-
tication systems like OpenID Connect (OIDC) face increasing risks due to their
reliance on classical public-key algorithms. As organizations move to adopt post-
quantum secure cryptographic schemes, they must confront challenges related to
interoperability, backward compatibility, and the weakening of assumptions such as
factoring and discrete logarithms.

To address these challenges, our team built a hybrid post-quantum OIDC au-
thentication system that integrates both classical and quantum-resistant crypto-
graphic primitives. Our implementation combines ECDH (P-256) with Kyber512
for hybrid key exchange and employs a dual-signature scheme—ES256 and Fal-
con512—to secure JSON Web Tokens (JWTs). Built using the open-source libraries
libogs and ogs-provider, the system adheres to current cryptographic standards
while enhancing OIDC'’s resilience against quantum attacks.

We tested the full authentication flow locally using Flask-based Relying Party
(RP) and OpenlD Provider (OP) servers. The RP’s authorization endpoint re-
sponded in approximately 41ms, and the OP’s token endpoint—performing a full
hybrid TLS handshake—completed in around 27ms. These results demonstrate
that integrating post-quantum cryptography into OIDC is both feasible and effi-
cient under realistic conditions.

By open-sourcing our implementation and performance benchmarks, we aim
to provide a practical foundation for organizations seeking to adopt quantum-safe
identity systems without compromising existing infrastructure or user experience.

1 Motivation

1.1 Why OpenlID Connect?

OpenID Connect is a universally accepted third-party authentication protocold. It is
based on Transport Layer Security (TLS) for network traffic protection between the ap-
plication, the third-party identity provider, and the user, and JSON Web Token (JWT),
as a proof of authentication of the user and the authorization of user resources for the
application, which the application can later use to access the user’s resources. The choice

of OpenID Connect for this project is two-fold: it is a critical, widely adopted authenti-
cation protocol, and its multi-round network communication nature makes it a natural
candidate for analysis.

1.2 Why hybrid schemes instead of purely post-quantum schemes?

NIST has been running the Post-Quantum Cryptography Standardization program for
almost a decade now and has had several rounds that the proposed algorithms need to
make it through during which they will be publicized so that they can be researched and
eliminated in case of any vulnerabilities found. After 4 rounds, they have standardized
CRYSTALS-Kyber and HQC for key encapsulation mechanism (KEM) algorithms and
CRYSTALS-Dilithium, FALCON and SPHINCS+ for signature algorithms.

A pre-print paper “Quantum Algorithms for Lattice Problems” [I], released last year
in 2024, alarmed the research community as it proposed that the LWE problem could
be solved. As the hardness of the LWE problem forms the basis of many lattice-based
cryptographic schemes, this could have upended much of the previous research in the
field and set back post-quantum standardization significantly.

Up to that point, most of the promising algorithms that had passed several rounds
in the NIST standardization program and were marked for standardization were depen-
dent on lattice-based assumptions, and having one of the core lattice-based assumptions,
hardness of the LWE problem, being questioned would have suggested vulnerabilities in
the algorithms proposed for standardization.

The initial winners of CRYSTALS-Kyber for key encapsulation mechanism (KEM) al-
gorithms and CRYSTALS-Dilithium, FALCON and SPHINCS+ for signature algorithms
were announced in 2022 and are all lattice-based except for SPHNCS+. Therefore, for the
next round, NIST called for algorithms that came from assumptions other than lattice-
based to account for the case that future research could break some types of assumptions,
so widening their search of algorithms to different bases could come to be prudent.

The quantum algorithm proposed by that paper, Quantum Algorithms for Lattice
Problems, was found to have a bug in one of the steps that was not easy to fix, so
the LWE problem has not been solved in polynomial time as of yet. However, this
emphasized that cryptographic research is ever changing, and depending on algorithms
based on one still-to-be-tested assumption is not reliable. Further, we need more time
to keep studying both the proposed post-quantum schemes and the assumptions these
schemes are based on to improve trust in purely post-quantum systems. Even if the
assumptions hold, cryptographers have not studied implementations long enough to catch
major side-channel attacks.

While the amount of time and effort spent on standardization of post-quantum al-
gorithms might seem long, it is no match to the time spent by the field in general on
studying classic schemes, which comes to upwards of 50 years. [2] It follows that post-
quantum schemes have not had had enough time to be fully studied and therefore to
be trusted. Furthermore, post-quantum alternatives have not stood the test of time as
factoring- /discrete-log- based algorithms.

In the process of upgrading to post-quantum secure cryptographic schemes, interop-
erability and backward compatibility will be important issues. In the meantime, transi-
tioning towards a post-quantum secure future will still involve systems relying on widely-
researched classical schemes as a basis to affirm that the system will be at least as secure
as the guarantees provided by the classical scheme. Yet, as the need of transition work

is pressing, hybrid schemes have been brought into play. Hybrid schemes secure systems
using specific combinations of classical and post-quantum schemes to assure that even if
the chosen post-quantum crypto-system ongoing research faces any obstacles, the system
and the encryption can still rely on the classical schemes’ security before the advent of
cryptographically relevant quantum computers.

Moreover, we hypothesize that the overhead of including classical algorithms to post-
quantum algorithms will be minimal because post-quantum schemes have much larger
key sizes. In fact, a hybrid key exchange combining X25519 with post-quantum key
encapsulation mechanism (KEM) ML-KEM-768 has a hybrid public key less than 3%
larger than ML-KEM-768 alone. Similarly, a hybrid signature scheme combining ECDSA
with ML-DSA-44 has a hybrid signature size less than 3% larger. [3]

2 Background

2.1 Post-quantum Cryptography

With the rise of computing power and the dawn of quantum computing, National Insti-
tute of Standards and Technology (NIST) has made calls for post-quantum cryptographic
scheme submissions in their work towards standardization of post-quantum algorithms.
After several rounds over the years, they have standardized CRYSTALS-Kyber and HQC
for key encapsulation mechanism (KEM) algorithms and CRYSTALS-Dilithium, FAL-
CON and SPHINCS+ for signature algorithms. However, industry adoption of post-
quantum cryptography (PQC) into all their products will be an arduous task in the com-
ing years. In the process of upgrading to post-quantum secure cryptographic schemes,
interoperability and backward compatibility will be important issues. Furthermore, post-
quantum alternatives have not stood the test of time as factoring-/discrete-log- based
algorithms.

2.2 OpenlD Connect

OpenID Connect (OIDC) is the standard third-party authentication and authorization
protocol in the web. Building on top of the OAuth 2 protocol, it enables the end applica-
tion, i.e., the relying party (RP) (or client), to verify the authenticity/identity of a user,
i.e., the resource owner, through a third-party identity provider (IdP) such as Google,
Apple, or Github, and access a restricted set of authorized resources on behalf of the
user, such as the profile information of the user. [4]

In a typical authorization code grant flow, as shown in Figure|l, when the RP requires
verification of user identity, a user is redirected to the IdP’s authentication endpoint.
After successful authentication, the browser receives a temporary authorization code from
the IdP, which it can then forward to the RP. The RP then exchanges the authorization
code and a client secret for an access token and an ID token, which are used to access
protected resources on behalf of the user.

The only public-key cryptographic systems in the flow are Transport Layer Security
(TLS) and JSON Web Tokens (JWT). JWTs are asymmetrically signed tokens given
to the RP for future access to the protected resources. It is signed by the IdP with a
private key and is verifiable by any resource server (and even the RP) with the public
key. All network traffic is protected by TLS, which starts with a handshake to perform
key establishment using an asymmetric key suite to obtain a shared secret key to be used

Relying Party (RP) User Agent (Browser) Identity Provider (IdP)

1. Protected Resource

2. Redirect to IdP’s Authentication Endpoint

(response_type, client id, scope, redirect_uri)

3. Authentication and Authorization

-

4. Redirect back to, RP at redirect_urt

<

(code)

5. Token Endpoint

(grant_type, code, redirect_uri, client,z;l)

6. Response

A

(access_token, token_type, id_token)

Figure 1: OIDC Authentication Flow

with a symmetric cipher for actual communication. [4] Symmetric ciphers are considered
quantum-safe as long as keys are of at least 128 bits.

For post-quantum key exchange, people often study key encapsulation mechanisms
(KEMs), first introduced by Shoup (2000) [5]. The motivation is that public-key encryp-
tion is rarely used to encrypt every message due to its larger key and ciphertext size,
but is often used for session key establishment in the beginning. KEMs abstract the
use of public-key encryption for key establishment. Mathematically, KEM is a triple of
algorithms (KeyGen, Encap, Decap), where

e KeyGen() generates (pk, sk), a public key and a private key pair;

e Encap(pk), a randomized algorithm run by a client, takes pk and outputs a shared
symmetric session key k to be kept and a ciphertext ¢ of k to be sent to the server;

e Decap(sk,c), run by the server, outputs the shared key k. [6]

Although a public-key encryption scheme can be trivially used to construct a KEM (by
public-key encrypting a random session key k to send to the server), it is common in
applied cryptography to build KEMs for constructing post-quantum public-key encryp-
tions.

2.3 Post-Quantum Hybridization and Security Guarantees

Hybrid cryptographic schemes in the post-quantum context refer to the use of both a
classical algorithm in combination with a post-quantum algorithm. The combination of

4

classical and post-quantum algorithms could follow two main methods, a layered approach
or a composition approach. As for the security of these two approaches, in basic terms,
when a post-quantum algorithm is discovered to be broken by either classical or quantum
computers, the inner classical signature can still guard against classical adversaries.

2.3.1 Layered Hybrid Schemes

A layered approach works by somehow nesting a classical algorithm within a post-
quantum algorithm.

e KEM schemes: One proposed method for a nesting type of combination of KEM
schemes is to have the resulting ciphertext be the concatenation of the outer KEM’s
ciphertext with an inner KEM’s ciphertext that is encrypted with the “outer”
KEM’s secret key derived from its shared secret. And the final shared secret is
the result of the shared secrets of the “inner” and “outer” KEMs being passed
through a split-key PRF. [7]

e Signature schemes: One possible nesting is using a post-quantum algorithm to
sign the resulting classical signature of a message. A stronger nesting method for
hybridization is for the post-quantum algorithm to sign both the classical signature
along with the original message. [§]

The following outlines the security of layered approach for KEM and signature schemes.

e KEM: CCA security is achieved since a split-key PRF is used to create the final
shared secret. The ciphertext will be indistiguishable from random as long as
the outer KEM uniform guarantee holds; since the outer KEM ciphertext is itself
uniform and so is the inner KEM ciphertext since it is encrypted with the outer
KEM'’s shared secret. [7]

e Signature: The strong nesting method can get guaranteed strong unforgeability as
long as the outer signature scheme (the one that signs both the message and the
first classically signature) has strong unforgeability. This holds even if the first
signature is only existentially unforgeable. [9]

2.3.2 Composite Hybrid Schemes

A composition approach works by combining the objects from the classical and the post-
quantum algorithm.

e KEM: Independently generate the key suites (pky, sk1) and (pks, sko) from each type
of KEM and pass these results to a key derivative function (KDF). As an example,
[10] takes the exclusive or (XOR) of the two session keys and a concatenation of
the two ciphertexts for encapsulation:

(617 kKEM,lHkMAC’,l) — Encapl(pkl), (02, kKEM,QHk'MAC,Q) — Encapg(pkg),
kxev = kxevi © kxewue, (shared symmetric key)

c=(c1,¢2), knac = (kmaca, knmace)- (sent to server)

A server may XOR Decap(sky, c1) and Decap(ska, cy) to obtain kg pys. [10] showed
that the scheme is IND-CCA secure if either KEM is IND-CCA secure. The addition

of a one-time unforgeable MAC ensures security against an active adversary (with
access to the decapsulation oracle) cannot forge a kg ga-karac pair by mixing-and-
matching multiple ciphertexts.

Alternative constructions rely on dual-PRFs, which satisfy PRF security when ei-
ther the key or the message has enough entropy. [11], 12]

e Signature: Independently sign using the classic scheme and post-quantum scheme
and send both to verifier; verifier only accepts if both signatures are valid.

The following outlines the security of composite approach for KEM and signature schemes.

e KEM: security depends on the method of combination used. For example, if simple
concatenation is used, and the ciphertexts of each type of KEM are just concate-
nated to each other, the indistinguishability from randomness can be broken if
either one portion can be identified as not random with probability greater than
% + € which is possible if just one of the portions is recalculated. [7]

e Signature: composite signature is deemed invalid if the verification of either part
of the composite signature fails, so it follows that the security of the composite
approach is at least as strong as the weaker of the two types of signature algorithms.
For example, if concatenating signatures from Dilithium (a strongly unforgeable
scheme) with one from ECDSA (existentially unforgeable scheme), the resulting
hybrid will only have the weaker security guarantee of existential unforgeability. [9]

2.3.3 Deployed Hybrid Schemes

Hybridization in use in current systems follows a form of composition, a simple concate-
nation. This type of composition is also used in the construction of hybrid schemes that
are provided for use through the open-source libraries that we utilized in our project
implementations.

For example, hybrid KEM in TLS 1.3, as proposed in an internet draft, looks like a
simple concatenation of the different algorithms’ results and transmitting these as one.
[12] The client side would receive a concatenation of the public keys generated from the
KeyGen functions, and the server side would keep the concatenation of the ciphertext
outputs of the encapsulation method of the KEMs. Lastly, the shared secrets are also
concatenated together and run through a HKDF function (HMAC based key derivative
function). One aspect of the security for this approach is using only constant length
values for all public keys, ciphertexts and shared secrets. Variable length of the keys
could lead to timing side channel attacks, and variable length of the shared secrets could
detract from the collision resistant properties of the HKDF. Given that the shared secrets
are of fixed length, however, this method was shown to be secure when the HKDF utilized
the dual-PRF combiner. [I2] This hybrid version of TLS has been supported in Chrome.
I3

3 Other Related Works

A prior work that inspired our idea for this project came from the paper Post-Quantum
Electronic Identity: Adapting OpenID Connect and OAuth 2.0 to the Post-Quantum
Era.[I4] This 2022 paper outlines research on making OpenID and OAuth 2.0 secure

for post-quantum usage. OpenlD is built on top of OAuth 2.0 with TLS and JWT
forming major components of both, so this research also largely involved making these
more ubiquitous protocols capable of using post-quantum cryptographic schemes, since
at the time of the paper, deployed TLS and JWT protocol usage was still based entirely
on classical cryptography.

After describing their literature survey on “identify[ing] existing solutions to [the]
problem... of a record-now-decrypt-later attacker retrieving and subsequently imper-
sonating users with these tokens”, they detail the changes made for their post-quantum
secure implementation. They used NIST standardized PQC KEX algorithm (Crystal-
KYBER) to update the classical TLS and PQC signature algorithms (Dilithium, Falcon,
SPHINCS+) for JWT. In addition, they outlined a testing method using a reproducible
containerized testing environment built as part of their implementation.

4 Benchmarking Various Hybrid Scheme Pairs

While open source libraries like libogs offer hybrid schemes, we created Golang scripts
to benchmark KEM hybrids and signature hybrids to test the performance and memory
usage of more pairs of classic and post-quantum algorithms. This manual hybridiza-
tion script focused on using the concatenation approach for both KEM and signature
algorithms.

The list of various statistics can be found in the Appendix [Al For the KEM pairs,
times for key generation, encapsultation and decapsulation are included, and sizes for the
hybrid public and private keys, shared secret adn ciphertext are also included. For the
signature pairs, times for key generation, signing and verifying are included as well as
the signature size and the rate of successful verification validity of both the classic and
post-quantum signatures.

In the end, even though we have tested the results of various pairs of hybrid schemes,
our follow-up implementation of the complete hybrid OpenID only uses one pair type for
each of the KEM and signature hybrid schemes due to the increased complexity of the
full protocol implementation.

5 Implementation and Hybrid Communication Flow

In this section, we introduce the architecture and communication flow of our hybrid
OpenlD Connect (OIDC) authentication system. Our design aims to ensure secure au-
thentication that is resilient against both current classic adversaries and future post-
quantum adversaries.

5.1 Libraries

Our implementation adopts the Open Quantum Safe (OQS) project’s open source libraries
to integrate post-quantum cryptography with classic security schemes. In particular, we
used:

liboqgs[15]: An open-source C library providing implementations of quantum-safe key
encapsulation mechanisms and digital signature algorithms. It offers a common API for
these algorithms, and we used the libogs implementation of the hybrid ES256 + Falcon512
hybrid signature scheme and the hybrid TLS KEM P-256 + Kyber512 scheme.

ogs-provider[16]: A provider module based on OpenSSL 3.0 that allows the modular
use of quantum-safe algorithms from libogs within the standard OpenSSL framework.
Integrating oqs-provider modules allowed us to deploy hybrid key exchange and signature
schemes in TLS 1.3, X.509, and S/MIME protocols.

Utilising these tools, our system achieves a balance between current operational per-
formance and long-term security sustainability, providing a practical path forward for
organizations preparing for emerging quantum threats without sacrificing usability or
interoperability.

5.2 Hybrid OIDC Authentication Flow

This section details the structure of our hybrid OIDC authentication system from the
perspective of a user’s journey through the authentication process. A diagram depicting
the flow of information in the system is shown in the diagram below Fig. [2|

Upon initiating the client application, the user’s browser establishes TLS sessions
with both the OpenID Provider (OP) and the Relying Party (RP). While traditional
TLS configurations employ classical elliptic-curve Diffie-Hellman (ECDH) to perform
key exchange, our system adopt a hybrid key-exchange mechanism combining ECDH
over curve P-256 with the Kyber512 Key Encapsulation Mechanism (KEM). This hybrid
scheme combines the classic and efficient ECDH with the quantum-resistant properties
of Kyber512, and the shared secret secure generated is secure against both classical and
quantum threats.

Following TLS establishment, the user can now initiate the login process, prompting
the RP to redirect the browser to the OP’s authorization endpoint over the hybrid-
secured channel. The OP then authenticates the user through standard methods (such
as credentials or multi-factor authentication). The process remains secure within the
hybrid TLS framework.

Upon successful authentication, the OP issues an authorization code and redirects the
user back to the RP. The RP exchanges this authentication code for user ID tokens at the
OP’s token endpoint. Again, all communications between RP, OP and client application
are secured via the hybrid TLS channel. Confidentiality and integrity are maintained
throughout the process.

When the token is successfully exchanged, the OP generates an ID token in the
form of a JSON Web Token (JWT) that is signed with dual signatures: the classical
ECDSA (ES256) and the post-quantum Falcon512 algorithm. The RP retrieves the
OP’s public keys through the JSON Web Key Set (JWKS) endpoint and verifies both
signatures. Finally, access is granted to the user only upon successful verification of
both signatures, ensuring the token’s authenticity and integrity against both classical
and quantum adversaries.

5.3 Hybridization of Classical and Post-Quantum Schemes

As our implementation combines classical cryptographic algorithms with post-quantum
cryptographic (PQC) algorithms, it is important to discuss how two different schemes are
hybridized to safeguard security promises. Our hybridization method follows a straight-
forward concatenation strategy, aligning with relevant IETF Internet-Drafts [12] and
supported by Open Quantum Safe project’s libraries libogs[15] and ogs-provider[16].

User Agent / Demo Script

RP Container (Docker) Hybrid TLS KEM P-256 +
LS > Kyber512

—1 GET /auth————

5 GEtha\Ibaa(?code—-k‘

Flask RP

Y5302 to OP Jauth—] \ 6 POST ftoken
7 200 {tokens}

& 200 OK- uses

AN TLS

Keydar ES256 & Falcon512
verify

Flask OP

OP Container (Docker) '\
OpenSSL 0QS Provider
GET OP \ links

4 302 with cod

KeyBundle ES256 &

\ o Falcon512 sign

\
)
A

Figure 2: Structure Diagram of Hybrid OIDC Authentication Flow

5.3.1 Hybrid Key Exchange (KEX)

Our TLS 1.3 handshake employs hybrid key exchange by concatenating classical elliptic-
curve Diffie-Hellman (ECDH, P-256) and post-quantum Kyber512 Key Encapsulation
Mechanism (KEM) public keys. The resulting shared secret concatenates the classical
components and the PQ [16].

5.3.2 Hybrid Digital Signatures

The JWT signatures are generated using a hybrid combination of classical ECDSA
(ES256) and the Falcon512 PQ algorithm. Following the standards for composite sig-
natures, classical and PQ signatures are simply concatenated. The verifying party inde-
pendently validates two signatures using corresponding public keys obtained via JWKS

[16].

5.3.3 Integration into Cryptographic Standards

The OQS-provider integrates hybrid schemes into standard cryptographic formats, in-
cluding TLS handshake structures used in our project, X.509 certificates, and PKCS#8
private keys. All hybrid structures use straightforward OCTET_STRING concatenation
encoding, simplifying adoption and deployment [16].

Our concatenation-based hybrid approach is simple, but it provides interoperability.
It is easy to deploy and creates minimal computation overhead. Overall, it is a reliable
step in our transition into a post-quantum safe future.

6 Testing and Discussion

We have created a functional OIDC system built on top of hybrid KEM and hybrid JWT
signature scheme. Our system works headlessly, and we tested our system’s end-to-end
communication using the terminal as the “client application”, and 2 ports running locally
as the Relying Party and the OpenID Provider.

In our preliminary benchmarks, the RP’s /auth endpoint (HTTP) consistently re-
sponded in about 41ms, reflecting only the Flask routing and Docker network overhead.
The OP’s /token endpoint (HTTPS) recorded roughly 27ms per request, performing a full
TLS handshake with Kyber512 KEM + ECDH (P-256) and executing the token-endpoint
logic. Overall, RP redirect remained sub-50ms, and the end-to-end OP processing (in-
cluding post-quantum key operations) stayed under 30ms. Further evaluating our testing
results, we concluded that our hybrid-PQC layers added a tolerable small latency to the
system with majority of the computation overhead spent on executing the PQC schemes.

7 Future Work

With our hybrid-PQC OpenlD system, our goals for the future are to make post-quantum
authentication more accessible and to validate its performance in more real-world scenar-
ios. To that end, we will open-source both our implementation and system performance
tests, allowing researchers to examine and adapt our system. We will also collect data
on comprehensive performance metrics: end-to-end latency, CPU usage, token size, and
memory footprint. This information would provide great insight into the trade-offs in-
volved in deploying hybrid OIDC systems at scale. Finally, we plan to expand support for
additional hybrid KEMs and signature algorithms (e.g., HQC, BIKE, Falcon, Dilithium),
further enhancing the flexibility and security of our system.

From a broader perspective, our work seeks to bridge the gap transitioning from
today’s classical protocols to tomorrow’s quantum-resistant systems. As quantum com-
puting evolves at a steady speed, classical algorithms will become increasingly vulnerable.
By combining post-quantum primitives with the familiar OIDC security schemes, we pre-
serve interoperability and efficiency of the current OIDC implementation while upgrading
it to be secure against future threats. Through open-sourcing our code, rigorous bench-
marking, and supporting more PQC schemes, we hope to accelerate global adoption of
hybrid post-quantum security schemes and help netizens around the world transition to
a quantum-safe future without sacrificing usability or speed of the systems they use.

Lastly, it remains theoretically interesting to construct efficient hybrid schemes from
the ground up which are secure when at least one of its component is secure. Although the
overhead of adding classical counterparts is small, we have mainly focused on black-box
hybridization in this work.

8 Member Contributions

e Zitong Chen: Completed the implementation of the hybrid OIDC authentication
system; performed initial testing on the system’s redirect-in latency and handshake
latency; wrote the implementation (Section 5), testing (Section 6), and future work
(Section 7) sections of the report; organized most team check-ins and in charge of
most of written communications with our TA Katarina; kept track of the project
timeline and sent reminders about deadlines and requirements.

e Shreya Thipireddy: For the report, wrote the abstract, motivation section on ‘why
hybrid schemes’ (Section 1.2), the background sections of ‘post-quantum cryptogra-
phy’ (Section 2.1) and ‘post-quantum hybridization and security guarantees’ (Sec-
tion 2.3), the ‘related works’ section (Section 3), and the ‘benchmarking various

10

hybrid scheme pairs’ section (Section 4) with testing results listed in the appendix
section ’hybrid pairs benchmarking results’. Conducted a literature review that
formed most of the first half of the paper. Researched feasible libraries and inte-
gration to utilize previously implemented hybrid post-quantum schemes. Created
a Golang testing scripts and benchmarked various hybrid schemes to add to our
hybrid scheme analysis.

Chon Hou (Jophy) Ye: Analyzed the communication between different parties and
protocoles involved in OIDC. Completed background research on the security of
different hybridization methods. Wrote Section 1.1 ‘Why OpenlD Connect?’, 2.2
‘OpenlD Connect’, and co-wrote section 2.1 ‘Post-Quantum Cryptography’, 2.3
‘Post-Quantum Hybridization and Security Guarantees’, 7 ‘Future Work’, and the
abstract. Made early attempts to set up containerized environments for the different
parties involved in OIDC, which is then carried on by Zitong.

References
[1] Y. Chen, “Quantum algorithms for lattice problems,” Cryptology ePrint Archive,
Paper 2024 /555, 2024. [Online]. Available: https://eprint.iacr.org/2024 /555
2] L. Chen and M. Scholl, “The cornerstone of cyberse-
curity - cryptographic standards and a 50-year evolution,”
2022. [Online]. Available: https://www.nccoe.nist.gov/news-insights/

cornerstone-cybersecurity-cryptographic-standards-and-50-year-evolution

ETSI, “Cyber security (cyber); quantum-safe cryptography (gsc); deployment
considerations for hybrid schemes,” Furopean Telecommunications Standards
Institute, Technical Report TR 103 966, Oct. 2024, dTR/CYBER-QSC-
0021. [Online]. Available: https://portal.etsi.org/webapp/WorkProgram/Report._
Workltem.asp?WKI_ID=64284

F. Schardong, A. Giron, F. Miiller, and R. Custédio, “Post-quantum electronic iden-
tity: Adapting openid connect and oauth 2.0 to the post-quantum era,” in Cryptol-
ogy and Network Security, ser. Lecture Notes in Computer Science, A. R. Beresford,
A. Patra, and E. Bellini, Eds., vol. 13641. Cham: Springer, Nov. 2022, pp. 371—
390, 21st International Conference, CANS 2022, Abu Dhabi, UAE, November 13-16,
2022, Proceedings.

V. Shoup, “Using hash functions as a hedge against chosen ciphertext attack,” in
Advances in Cryptology — FUROCRYPT 2000, B. Preneel, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 275-288.

S. Galbraith, The KEM/DEM paradigm. Cambridge University Press, 2012, ch. 23,
pp. 471-478.

F. Giinther, M. Rosenberg, D. Stebila, and S. Veitch, “Hybrid obfuscated key
exchange and KEMs,” Cryptology ePrint Archive, Paper 2025/408, 2025. [Online].
Available: https://eprint.iacr.org/2025/408

11

https://eprint.iacr.org/2024/555
https://www.nccoe.nist.gov/news-insights/cornerstone-cybersecurity-cryptographic-standards-and-50-year-evolution
https://www.nccoe.nist.gov/news-insights/cornerstone-cybersecurity-cryptographic-standards-and-50-year-evolution
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=64284
https://portal.etsi.org/webapp/WorkProgram/Report_WorkItem.asp?WKI_ID=64284
https://eprint.iacr.org/2025/408

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

A

Al

N. Bindel, U. Herath, M. McKague, and D. Stebila, “Transitioning to a
quantum-resistant public key infrastructure,” Cryptology ePrint Archive, Paper
2017/460, 2017. [Online]. Available: https://eprint.iacr.org/2017/460

D. Ghinea, F. Kaczmarczyck, J. Pullman, J. Cretin, S. Koélbl, R. Misoczki,
J.-M. Picod, L. Invernizzi, and E. Bursztein, “Hybrid post-quantum signatures
in hardware security keys,” Cryptology ePrint Archive, Paper 2022/1225, 2022.
[Online]. Available: https://eprint.iacr.org/2022/1225

N. Bindel, J. Brendel, M. Fischlin, B. Goncalves, and D. Stebila, “Hybrid
Key Encapsulation Mechanisms and Authenticated Key Exchange,” 2018,
publication info: Published elsewhere. Major revision. 10th International
Workshop on Post-Quantum Cryptography (PQCrypto 2019). [Online]. Available:
https://eprint.iacr.org/2018/903

M. Bellare, “New proofs for NMAC and HMAC: Security without collision-
resistance,” in Advances in Cryptology - CRYPTO 2006, ser. Lecture Notes in Com-
puter Science, C. Dwork, Ed., vol. 4117. Heidelberg: Springer, Aug. 2006, pp.
602-619.

D. Stebila et al., “Hybrid key exchange in tls 1.3,” Internet Engineer-
ing Task Force, Internet-Draft draft-ietf-tls-hybrid-design-12, Jan. 2025, ex-
pires July 18, 2025. [Online|. Available: |https://datatracker.ietf.org/doc/html/
draft-ietf-tls-hybrid-design-12

E. Bursztein and F. Kaczmarczyck, “Toward quantum resilient security
keys,” 2023. [Online]. Available: https://security.googleblog.com/2023/08/
toward-quantum-resilient-security-keys.html

F. Schardong, A. A. Giron, F. L. Miiller, and R. Custddio, “Post-quantum electronic
identity: Adapting openid connect and oauth 2.0 to the post-quantum era,” in
Cryptology and Network Security, A. R. Beresford, A. Patra, and E. Bellini, Eds.
Cham: Springer International Publishing, 2022, pp. 371-390.

D. Stebila, M. Mosca, and contributors, “libogs: C library for quantum-
safe cryptography,” 2024, accessed: 2024-05-11. [Online]. Available: https:
//github.com /open-quantum-safe/libogs

D. Stebila and contributors, “oqgs-provider: Quantum-safe algorithm provider
for OpenSSL 3.0,” 2024, accessed: 2024-05-11. [Online]. Available: https:
//github.com /open-quantum-safe/ogs-provider

Hybrid Pairs Benchmarking Results
KEM

=== [X25519+ML-KEM-512] ===

KeyGen: 482.19ps
Encaps: 26.011ps
Decaps: 25.851ps

12

https://eprint.iacr.org/2017/460
https://eprint.iacr.org/2022/1225
https://eprint.iacr.org/2018/903
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-12
https://datatracker.ietf.org/doc/html/draft-ietf-tls-hybrid-design-12
https://security.googleblog.com/2023/08/toward-quantum-resilient-security-keys.html
https://security.googleblog.com/2023/08/toward-quantum-resilient-security-keys.html
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/oqs-provider
https://github.com/open-quantum-safe/oqs-provider

Total: 880.432ns

Hybrid key size: 832 bytes (Classical: 32, PQ: 800)

Hybrid private key size: 1664 bytes (Classical: 32, PQ: 1632)
Hybrid shared secret length: 32 bytes

Ciphertext length: 768 bytes

=== [X25519+KYBER512] ===

KeyGen: 24.422ps

Encaps: 21.998ps

Decaps: 15.481ps

Total: 387.615ps

Hybrid key size: 832 bytes (Classical: 32, PQ: 800)

Hybrid private key size: 1664 bytes (Classical: 32, PQ: 1632)
Hybrid shared secret length: 32 bytes

Ciphertext length: 768 bytes

=== [P-256+ML-KEM-512] ===

KeyGen: 17.658ps

Encaps: 14.239ps

Decaps: 16.6471s

Total: 272.745ns

Hybrid key size: 865 bytes (Classical: 65, PQ: 800)

Hybrid private key size: 1664 bytes (Classical: 32, PQ: 1632)
Hybrid shared secret length: 32 bytes

Ciphertext length: 768 bytes

=== [P-256+KYBER512] ===

KeyGen: 14.6361s

Encaps: 16.6491s

Decaps: 11.851ps

Total: 271.241ps

Hybrid key size: 865 bytes (Classical: 65, PQ: 800)

Hybrid private key size: 1664 bytes (Classical: 32, PQ: 1632)
Hybrid shared secret length: 32 bytes

Ciphertext length: 768 bytes

=== [P-384+ML-KEM-768] ===

KeyGen: 27.307ps

Encaps: 21.453ps

Decaps: 24.1651s

Total: 278.371ps

Hybrid key size: 1281 bytes (Classical: 97, PQ: 1184)
Hybrid private key size: 2448 bytes (Classical: 48, PQ: 2400)
Hybrid shared secret length: 32 bytes

Ciphertext length: 1088 bytes

=== [P-384+KYBER768] ===

KeyGen: 16.969ps

Encaps: 20.196ps

Decaps: 13.471ps

Total: 196.758)1s

Hybrid key size: 1281 bytes (Classical: 97, PQ: 1184)
Hybrid private key size: 2448 bytes (Classical: 48, PQ: 2400)

13

Hybrid shared secret length: 32 bytes

Ciphertext length: 1088 bytes

=== [P-384+ML-KEM-1024| ===

KeyGen: 27.362ps

Encaps: 23.6671s

Decaps: 25.179ps

Total: 1.360509ms

Hybrid key size: 1665 bytes (Classical: 97, PQ: 1568)
Hybrid private key size: 3216 bytes (Classical: 48, PQ: 3168)
Hybrid shared secret length: 32 bytes

Ciphertext length: 1568 bytes

=== [P-384+KYBER1024] ===

KeyGen: 30.069ps

Encaps: 26.504ps

Decaps: 19.415ps

Total: 1.226372ms

Hybrid key size: 1665 bytes (Classical: 97, PQ: 1568)
Hybrid private key size: 3216 bytes (Classical: 48, PQ: 3168)
Hybrid shared secret length: 32 bytes

Ciphertext length: 1568 bytes

A.2 Signature

=== [Ed25519+Dilithium2] ===
KeyGen avg time: 346.0361s
Sign avg time: 109.597ps
Verify avg time: 97.802ps
Avg signature size: 2484 bytes
Valid signatures: 100.0%
=== [Ed25519+Dilithium3] ===
KeyGen avg time: 66.834ys
Sign avg time: 144.205ps
Verify avg time: 95.709ps
Avg signature size: 3357 bytes
Valid signatures: 100.0%
=== [Ed25519+Dilithiumb] ===
KeyGen avg time: 96.66511s
Sign avg time: 209.781ps
Verify avg time: 125.186ps
Avg signature size: 4659 bytes
Valid signatures: 100.0%
= = = [RSA_2048 + Dilithium2| = = =
KeyGen avg time: 122.797336ms
Sign avg time: 992.264ps
Verify avg time: 59.061y1s
Avg signature size: 2676 bytes
Valid signatures: 100.0
=== [RSA_2048+Dilithium3] ===

14

KeyGen avg time: 117.918473ms
Sign avg time: 1.039301ms

Verify avg time: 75.9541s

Avg signature size: 3549 bytes
Valid signatures: 100.0%

=== [RSA_2048+Dilithium5| ===
KeyGen avg time: 127.850464ms
Sign avg time: 1.122242ms

Verify avg time: 107.045ps

Avg signature size: 4851 bytes
Valid signatures: 100.0%

=== [ECDSA _P256+Dilithium2] ===
KeyGen avg time: 54.4331s

Sign avg time: 131.09ps

Verify avg time: 113.72ps

Avg signature size: 2484 bytes
Valid signatures: 100.0%

=== [ECDSA_P256+Dilithium3] ===
KeyGen avg time: 71.55811s

Sign avg time: 157.294ps

Verify avg time: 136.384ps

Avg signature size: 3357 bytes
Valid signatures: 100.0%

=== [ECDSA_P256+Dilithiumb] ===
KeyGen avg time: 109.0961s

Sign avg time: 232.675ps

Verify avg time: 180.79ps

Avg signature size: 4659 bytes
Valid signatures: 100.0%

=== [Ed25519+Falcon-512] ===
KeyGen avg time: 7.092674ms

Sign avg time: 286.077ps

Verify avg time: 120.069ps

Avg signature size: 719 bytes

Valid signatures: 100.0%

=== [Ed25519+Falcon-1024] ===
KeyGen avg time: 19.348759ms
Sign avg time: 498.339ps

Verify avg time: 154.808ps

Avg signature size: 1334 bytes
Valid signatures: 100.0%

=== [RSA_2048+Falcon-512] ===
KeyGen avg time: 118.558771ms
Sign avg time: 1.149987ms

Verify avg time: 75.591s

Avg signature size: 910 bytes

Valid signatures: 100.0%

=== [RSA_2048+Falcon-1024] ===

15

KeyGen avg time: 140.695659ms

Sign avg time: 1.442385ms

Verify avg time: 130.651ps

Avg signature size: 1526 bytes

Valid signatures: 100.0

=== [ECDSA_P256+Falcon-512] ===
KeyGen avg time: 6.924798ms

Sign avg time: 289.829ps

Verify avg time: 135.884ps

Avg signature size: 718 bytes

Valid signatures: 98.0%

=== [ECDSA _P256+Falcon-1024] ===
KeyGen avg time: 20.115205ms

Sign avg time: 588.235ps

Verify avg time: 201.154ps

Avg signature size: 1334 bytes

Valid signatures: 100.0%

16

	Motivation
	Why OpenID Connect?
	Why hybrid schemes instead of purely post-quantum schemes?

	Background
	Post-quantum Cryptography
	OpenID Connect
	Post-Quantum Hybridization and Security Guarantees
	Layered Hybrid Schemes
	Composite Hybrid Schemes
	Deployed Hybrid Schemes

	Other Related Works
	Benchmarking Various Hybrid Scheme Pairs
	Implementation and Hybrid Communication Flow
	Libraries
	Hybrid OIDC Authentication Flow
	Hybridization of Classical and Post-Quantum Schemes
	Hybrid Key Exchange (KEX)
	Hybrid Digital Signatures
	Integration into Cryptographic Standards

	Testing and Discussion
	Future Work
	Member Contributions
	Hybrid Pairs Benchmarking Results
	KEM
	Signature

