
Keyless Blockchain

Alex Zhao, Kshitij Sodani, Tony Wu, Thomas Liu

May 2025

§1 Introduction

Traditional blockchain wallets rely on a long-term secret key (SK) that the user must
safely store and manage. Losing this SK is irrevocable: the user will permanently lose
access to their funds, and there’s no recovery path. Worse, every dApp uses its own
keypair, so users are forced to juggle multiple wallets or import buried private keys across
apps, making handling for the wallet an error-prone, cross-device hazard.

To resolve this problem, Keyless accounts designate authentication to Google, averting
the need for memorizing a secret key. Along the implementation, cryptographic consider-
ations of privacy and security from third parties motivates the layering with ZK proofs
of knowledge and added randomness.
Taken inspiration from the Aptos zero knowledge keyless protocol [1], we made our

own implementation to understand the circuit and survey the optimization and security
in hopes of improving upon it. Our implementation resulted in a simplified version of
the Aptos protocol that retained the structure and altered some internal procedures.

We further analyzed the security of our protocol and discovered an attack that violates
the statistically binding requirement of a ZK proof, however concluded that the security
was still computationally binding.

In future work, we intend to resolve this vulnerability while still retaining the simplicity
of the circuit, and automate the ZK proofs and Google authentication to deploy with
other services. With a completed and secure circuit, we intend to deploy on Ethereum
contracts to test the system in practice.

§2 Protocol

Since our implementation is based on Aptos keyless, we first describe the Aptos protocol
before moving to our implementation. The main differences in our implementation is
locally computing the zero knowledge proofs as well as implementing a different zero
knowledge protocol for cheaper verification.

A high level overview of the Aptos protocol flow can be found in Figure 1. We elaborate
on the technical details below.

§2.1 Key Generation

This is the first step of the protocol. The user client generates an ephemeral public/pri-
vate key pair (epk, esk) for digital signing. These keys will be used to sign transactions
and verify that all transactions are user approved. The ability to generate new keypairs
allows the user to not store keys locally, but we need to somehow verify that the keypairs
were actually generated by the user. This will be done through the Google OAuth service.

1



Alex Zhao, Kshitij Sodani, Tony Wu, Thomas Liu (May 2025) Keyless Blockchain

Figure 1: Flow chart A describes the flow of the Aptos protocol. Flow Chart B describes
the flow of our implementation.

The user client will also randomly generate an ephemeral blinding key r which will be
used to hide sensitive information from the external services.

§2.2 Google OAuth Signing

After generating keys, the user will login to their Google account through Google
OAuth while using a hash of epk and r, H(epk, r), as the nonce. Google will then return
a signed JWT containing the nonce, user email, and expiration to the user. This signed
JWT proves that a user with the corresponding Google account did in fact generate epk
while also not revealing epk to Google.

§2.3 Pepper Service

Another issue with using ephemeral keys instead of permanent ones is that every user
needs to have a permanent address that can send and receive transactions. However,
if we have the address simply correspond to the user email, then the anonymity of the
blockchain is broken. Thus, we require a pepper service to calculate a random pepper p
for each user which we can then hash with the user email and app id to compute their
address, H(uid, aud, p)
To ensure that transactions with the pepper service are zero knowledge, we will use

the following discrete log based protocol:

Algorithm 1 — Pepper service discrete log protocol.

1. Pepper service chooses a prime modulus M , a prime generator g, and a random
secret key sk. Then, they publish M , g, and a public key pk = gsk

2. User generates a random blinding key u and a hash of their user email E, and
computes h = guE.

3. The user sends h to the pepper service, and the pepper service will return hsk

to the user.

4. The user can compute their pepper p = Esk by evaluating hsk

pku as seen in
Equation 1.

2



Alex Zhao, Kshitij Sodani, Tony Wu, Thomas Liu (May 2025) Keyless Blockchain

hsk

pku
=

(guE)sk

(gsk)u
= Esk (1)

To ensure that only the user is able to use the pepper service to retrieve their pepper, we
can have the user generate a zero knowledge proof that with Google’s public key and epk
as public inputs, they know inputs of a signed JWT and r such that the signed JWT
corresponds to Google’s public key and it’s nonce is equal to H(epk, r). Then, the pepper
service only needs to verify the proof and check that the user’s epk is not expired before
performing the pepper calculations.

§2.4 Prover Service

The Aptos protocol decides to have a separate service for generating zero knowledge
proofs to reduce user computation. This prover service received a signed JWT, r, and p
and generates a zero knowledge proof that they know these values as private inputs given
the address, epk, and Google’s public key as public inputs. Specifically, the proof verifies
that the JWT is signed by google, the nonce is equal to H(epk, r), and the address is
equal to H(uid, aud, p).

§2.5 Blockchain

After receiving the zero knowledge proof, the user client can send it to the blockchain
and begin sending transactions. For every transaction, they sign it using their esk and
send it to the blockchain. This way, the blockchain only needs to verify the zero knowledge
proof once per session instead of once per transaction, because once the proof is verified
the chain knows that the (epk, esk) key pair is valid.

§2.6 Our Implementation

For our implementation, we decided to move the prover service locally, since only
one zero knowledge proof needs to be computed per session and there may be security
concerns with a 3rd party prover service which will know both your user email and
blockchain address.
For each part of the protocol, some implementation details are provided:

• The (epk, esk) keypair is generated using ed25519-dalek which generates a Ed25519
signature scheme over the Curve25519 elliptic curve.

• The blinding key r is generated as a random 256-bit integer.

• For all hashing, H(...) is performed through a Sha256 hash.

• The pepper service uses a modulus M = 109 + 7 and generator g = 3. This is
clearly not secure for modern systems, but these values can be easily changed and
were only chosen to test the system. In practice we would be using values on the
order of 256 bits, so after receiving the pepper, the user client performs a Sha256
hash on it to simulate having received a 256 bit pepper.

• For our zero knowledge proof protocol, we use the OpenVM implementation for
proving arbitrary rust code. More technical details on this protocol can be found
in the next section.

3



Alex Zhao, Kshitij Sodani, Tony Wu, Thomas Liu (May 2025) Keyless Blockchain

§2.7 Security

Our implementation is secure as follows:

• When a user logs into the app, Google knows that they own an address on the
blockchain but they are unable to determine the address due to the user’s blinding
key r and the security of SHA256.

• When a user requests a pepper from the pepper service, the pepper service does
not know which user has requested the pepper. The service is able to determine an
address given the user id, but is unable to reverse engineer a user id from address
due to the security of SHA256 and the space of user ids being too large to search.

• The security of the user’s transaction signing is guaranteed by ed25519-dalek.

• The security of Google’s JWT signing is guaranteed by RSA256.

• The security of the pepper service is guaranteed by the hardness of the discrete
log problem. Note that we can improve the security by using a discrete log elliptic
curve with the same protocol.

While working on the project, we discovered an attack for our implementation that
reveals some statistical information about the user id from the zero knowledge proof.
More details on the attack are provided in the next section.

§3 ZK Protocol

Our zero-knowledge protocol is implemented as a custom zkVM circuit built on the
OpenVM framework, an open-source zkVM released by Axiom. The use of a zkVM
significantly reduces our development overhead, since we can simply write intuitive Rust
that reads ”input” and computes ”assertions” that compile into an execution trace in
the PLONK (specifically plonky3) ZK protocol.

Internally, the circuit takes as private witnesses the Google-signed JWT (including its
RSA signature), the commitment nonce for the JWT H(epk, r), and all blinding factors
used in the OPRF and VRF steps. Externally, however, it reveals only three public
outputs: the derived on-chain public key

pubkey = H(sub, aud , r),

the ephemeral public key epk, and a session expiration timestamp. By exposing only these
values, the circuit binds a fresh blockchain identity (with the corresponding ephemeral
key and timestamp) to a valid Google login and pepper randomness without ever leaking
the underlying secrets.

Inside the circuit, we first parse the JWT header and payload as byte arrays and verify
their validity with string operations.

Next, verify the RSA signature under Google’s known public key against the payload
fields {sub, aud, nonce = H(epk, r)}. To do this, we had to use U2048 in Rust and pass
in sub-quotients as witnesses, because the zkVM was not optimized for U2048 division.
Next, we verify the nonce nonce = H(epk, r).
Finally, the circuit recomputes the address hash H(sub, aud, r) and emits it as a public

output, thus cryptographically linking the Google credentials and pepper to the on-chain
account.

4

https://openvm.dev/


Alex Zhao, Kshitij Sodani, Tony Wu, Thomas Liu (May 2025) Keyless Blockchain

The zkVM is able to execute quickly because of precompiles for the SHA256 operation.
Because of the iterative nature of SHA256, it is well-suited to proving with a PLONK-like
ZK system.
We employ the Groth16 proving system via the OpenVM backend: each AIR com-

ponent’s execution trace is committed through low-degree extensions and Merkle trees;
Fiat–Shamir challenges inject non-malleable randomness for sumchecks; and all polyno-
mial openings are batched into a single FRI-based proof. The resulting proof πsnark is com-
pact enough to verify on-chain with approximately 200 k gas, after which per-transaction
authentication is reduced to a lightweight ECDSA signature under the session key esk.
Due to the nature of this compilation and of PLONK, the resulting ZK proof is not

guaranteed to be statistically hiding like the original Aptos Keyless Circom proof is;
however, it computationally hides all inputs. The commitment for the entire program is
a Merkle root of the low-degree extension of the columns of the trace and the Merkle
root of the shared RAM. Since the commitment is opened with FRI, with overwhelming
probability, the actual rows of the trace itself are not revealed. Furthermore, the proof
posted to the EVM contains a Halo2 proof of the FRI verification protocol itself, with
the hash of the program code as an input.

§4 Specific Implementation Details

Smaller implementation details not related to security.

§4.1 User Client

The implementation for the user client can be found in [3]. The site is hosted on
https://localhost:8080 and is run using Python and Flask. It handles key generation,
OAuth, and transaction signing. Generation of the (epk, esk) keypair and signing of
transactions are done by compiled Rust binaries.
The flow of the service is as follows:

Algorithm 2 — User client flow.

1. User clicks sign in button, site generations a (epk, esk) keypair and the blinding
key r.

2. The site calculates the nonce and redirects to Google OAuth.

3. Upon authorizing, OAuth redirects back to the site which generates a random
u, hashes the user email E, computes h = guE to send to the pepper service
through a redirect.

4. The site receives the encrypted pepper through a redirect and decrypts it using
the pepper service’s public key.

5. The site displays relevant JWT, pepper, and key information on a homepage
with an option to create a transaction with destination and quantity fields.

6. Creating a transaction signs it with the users (epk, esk) pair and displays the
signed transaction data.

5



Alex Zhao, Kshitij Sodani, Tony Wu, Thomas Liu (May 2025) Keyless Blockchain

§4.2 Pepper Service

The pepper service is written purely in Python and Flask and can be found in [3]. It
simply receives h from a redirect, exponentiates it by the pepper service’s secret key, and
redirects back to the user client.

§4.3 Prover

Our prover is run locally using OpenVM and Rust and can be found in [2]. It takes in
the JWT, nonce, pepper p, and blinding key r as hidden inputs; technically, the nonce
is not needed and can be computed by the prover with H(epk, r) and epk as a public
input. The prover verifies the JWT’s signature and that the nonce matches H(epk, r)
and generates a zkVM proof of computation. It also reveals the expected address of the
given inputs.

§5 Potential Future Improvements

Due to time restraints, we were unable to finish our implementation completely. Some
future avenues we would like to explore:

• Our zero-knowledge proving service is disjoint from our main protocol. This was
mainly because it would be incredibly computationally intensive to compile our
prover to use the recursive Halo2 proof required to deploy to the EVM, but we
could still implement this in the future.

• For the same reason as above, we were unable to deploy our protocol onto Ethereum
contracts, but it would be interesting to do so in the future.

• The security of the pepper service could be improved by increasing the number of
bits of the pepper keys and upgrading to an elliptic curve discrete log system.

• Our zero-knowledge protocol is only computationally binding. Although we believe
that it is not computationally feasible to reverse engineer user information from
this information, we could take more effort to verify this claim, and take steps to
make the protocol statistically hiding.

§6 Contribution

• Alex and Kshitij worked on implementing the zero knowledge proofs using OpenVM.

• Thomas and Tony worked on implementing the main protocol.

References

[1] https://alinush.github.io/keyless

[2] https://github.com/cocohearts/aptos-clone

[3] https://github.com/oursaco/65610

6


	Introduction
	Protocol
	Key Generation
	Google OAuth Signing
	Pepper Service
	Prover Service
	Blockchain
	Our Implementation
	Security

	ZK Protocol
	Specific Implementation Details
	User Client
	Pepper Service
	Prover

	Potential Future Improvements
	Contribution

