
Anonymous Kerberos Authentication

Carol Chen
MIT

carol120@mit.edu

Evan Hong
MIT

ehong129@mit.edu

Luis Turino
MIT

turino14@mit.edu

Abstract—This paper proposes a novel enhancement
to the Kerberos authentication protocol by incorporating
zero-knowledge arguments of knowledge (zk-SNARK),
specifically the Groth16 scheme, to address privacy con-
cerns while maintaining strong security guarantees. In the
Kerberos model, the Key Distribution Center (KDC) is a
central point of trust, responsible for both authenticating
users and safeguarding their passwords. However, this
position of trust allows the KDC to keep track of logs
of user activities and, if compromised, could result in the
leakage of much sensitive data and the potential exposure
of user accounts. By integrating Groth16, we enable
authentication without the KDC ever learning or storing
the user’s password, or inferring private information from
user-to-service interactions. The proposed modification
ensures that even in the case of a compromised KDC, user
privacy and system integrity are preserved. This paper
explores the technical implementation of Groth16 within
the Kerberos framework and demonstrates how zero-
knowledge arguments of knowledge can enhance privacy
while being efficient and maintaining the robustness of the
original protocol.

I. INTRODUCTION

User authentication is a fundamental aspect of
any service. Whether the goal is to restrict access to
a select group or to enforce subscription-based us-
age, authentication mechanisms are essential com-
ponents of system design.

A wide range of authentication schemes have
been integrated into services ranging from online
banking to email systems. Among these, a prevalent
method is the username-and-password model. In
this scheme, the client sends their username to the
server, typically in plaintext, which the server uses
to locate an associated encrypted key. This key
can only be decrypted using the correct password.
Authentication is successful only when both the
username and password are valid. A user who
possesses only one of these, either a valid username

or password, will either be unable to retrieve the
encrypted key or unable to decrypt it.

While authentication schemes are designed to
protect servers from unauthorized clients, there are
cases where legitimate users may wish to preserve
their privacy during the authentication process. This
introduces a more nuanced challenge: how can a
system verify a user’s identity without learning
anything specific about that user? Although this idea
may initially seem counterintuitive, several estab-
lished solutions address this very concern. These
solutions fall under the category of zero-knowledge
arguments of identity, a family of cryptographic pro-
tocols that enable authentication without revealing
any underlying private information.

One such scheme is Groth16, a variant of zero-
knowledge Succinct Non-interactive Arguments of
Knowledge (zk-SNARKs), which relies on the com-
putational hardness of Quadratic Arithmetic Pro-
grams (QAPs) as its underlying foundation. In
this paper, we explore the applicability of the
Groth16 authentication scheme within the context
of Kerberos, a ticket-based authentication protocol
developed and maintained by MIT. Our motiva-
tion stems from the significant trust placed in the
Key Distribution Center (KDC) of the traditional
Kerberos model. The KDC is central not only to
mediating user-to-service communications, but also
to safeguarding users’ plaintext passwords. Since
every time a user needs to use a service, it must
tell the KDC the service name, the KDC can keep
track of a detailed log of services the users utilize.
Moreover, a compromised KDC can lead to both
the leakage of sensitive information and widespread
account leakage. To mitigate these risks, we propose
a modified authentication scheme that integrates
zero-knowledge arguments in such a way that even
a compromised KDC cannot gain access to user

credentials or infer meaningful information about
user-to-service interactions.

II. KERBEROS OVERVIEW

A. The Three Components: Client, KDC, Service
For an overview of the Kerberos protocol, we re-

fer to The Kerberos Network Authentication Service
(V5) by Neuman et al. [1].

1) Client: The first component in the Kerberos
authentication scheme is the client, which represents
the user attempting to authenticate with the Key Dis-
tribution Center (KDC) in order to access a desired
service. The client possesses a user key, derived
from the user’s password, as well as their username,
both of which are used during the authentication
process.

2) Key Distribution Center: The KDC is the cen-
tral authority responsible for initial authentication
in the Kerberos protocol. The KDC is composed
of the Authenticating Server (AS) and the Ticket
Granting Service (TGS). The AS verifies a user’s
identity and issues a ticket-granting-ticket (TGT).
The user utilizes the TGT to obtain service tickets
from the TGS, which allow authenticated users to
securely access services without repeatedly proving
their credentials. The KDC maintains a copy of all
user and service keys, and generates session keys.

3) Service: The service is the resource the client
ultimately wishes to access. Access to the service is
granted only after successful authentication through
the KDC. Each service maintains its own service
key, which is used to validate the tickets issued by
the KDC and establish secure communication with
the client.

B. Protocol
See Figure 1 for a diagram of the original Kerberos
protocol.

1) The client initiates the authentication process
by sending their username in plaintext to the
Authentication Server component of the KDC.

2) The KDC then responds with two items:
a Ticket Granting Ticket (TGT), which is
encrypted using the Ticket Granting Service
(TGS) key, and a session key (denoted as A),
which is encrypted using the client’s unique
user key. This session key includes informa-
tion such as the requested service and the

client’s identity, enabling secure communica-
tion in the next stage of authentication.

3) The client decrypts the message using their
user key to recover the session key A. Using
this session key, the client then sends a request
to the TGS, which includes the TGT, the
user’s username encrypted with session key
A, and the name of the requested service in
plaintext.

4) The TGS component of the KDC decrypts
the TGT using its copy of the TGS key,
thereby recovering the session key A. With
this session key, the TGS can then decrypt
the user’s encrypted username, verifying the
client’s identity and ensuring the request is
legitimate.

5) The KDC then responds by issuing a service
ticket, which is encrypted using the service’s
key and contains a new session key B. This
ticket is intended for the service the client
wishes to access. In addition, the KDC sends
the session key B to the client, encrypted
with the previously established session key
A, allowing the client to decrypt and use it
without exposing it to the service.

6) Since the client previously received session
key A from the KDC, they can use it to
decrypt the message and recover session key
B. With this key, the client encrypts their
username using session key B and sends it
to the service, along with the service ticket
obtained from the KDC.

7) The service, using its own copy of the service
key, decrypts and processes the service ticket.
To complete the authentication process, it then
sends a confirmation message back to the
client, encrypted with session key B.

C. Lack of Zero Knowledge and Security Concerns
As demonstrated by the protocol the KDC holds

the user keys of all users. With each user’s username
being public as it is tied to their emails, if the KDC
is ever compromised and user passwords are leaked,
all accounts would be compromised.

Another security concern is the lack of zero
knowledge. When executing the protocol, the client
explicitly sends over his identity in plaintext for the
KDC to then retrieve the service key wanted by the

Fig. 1. Diagram detailing Kerberos authentication and service access protocols

client. Although this scenario isn’t as bad as the
first, the KDC will have the capability of keeping
track of client activity across services.

III. ZERO KNOWLEDGE DESIGN

A. zk-SNARK’s Requirements

In a zero knowledge scheme there exists a prover
and a verifier. The prover holds knowledge to a key
that he wishes to prove to the verifier without ex-
plicitly telling the verifier the value of his key. The
verifier is to evaluate the arguments set forth by the
prover and either accept or reject. To ensure both ef-
ficiency and privacy, zk-SNARKs must satisfy four
essential cryptographic properties: zero-knowledge,
succinctness, non-interactiveness, and argument of
knowledge. These properties collectively enable a
prover to convince a verifier of a statement’s truth
without revealing any additional information, while
maintaining minimal communication overhead and

computational burden. In the context of authenti-
cation systems like Kerberos, these guarantees are
crucial for preserving client privacy and enabling
scalable verification.

1) Zero Knowledge: In a zero-knowledge proof,
the prover possesses a solution to an NP
problem and should be able to convince a
verifier of this knowledge without revealing
the solution itself. Moreover, the interaction
between the prover and the verifier can be
simulated entirely by the verifier, ensuring
that no knowledge beyond the validity of the
claim is transferred.

2) Succinctness: A key property of zk-SNARKs
is succinctness, meaning that the size of the
proof (or argument) grows sublinearly with
respect to the size of the solution, also called
the witness. In the case of Groth16, the proof
size is constant and completely independent

of the size of the witness, making it partic-
ularly well-suited for efficient verification in
constrained environments.

3) Non-interactiveness: The proof process is
non-interactive, meaning it does not require
multiple rounds of communication between
the prover and the verifier. Instead, the prover
generates a single, self-contained argument,
which the verifier can independently accept
or reject.

4) Argument of Knowledge: Arguments of
Knowledge assume a weaker, polynomial
bounded prover, in contrast to traditional
Proofs of Knowledge which assume a pow-
erful, computationally unbounded prover.

B. Groth16

Groth16 is a zk-SNARK protocol that efficiently
proves knowledge of a solution to a mathemati-
cal problem without revealing the solution itself
[2]. The protocol involves several key steps: first,
the problem is encoded into an Arithmetic Cir-
cuit, where each gate corresponds to a constraint.
Then, an execution trace is generated to track the
computation process. The prover constructs poly-
nomials using Lagrange interpolation, transform-
ing the matrices representing the constraints into
polynomial forms. These polynomials are combined
using Quadratic Arithmetic Programs (QAPs), and a
critical check is performed to ensure the correctness
of the proof. Throughout this process, discrete log-
arithms are used to hide evaluation points, allowing
the prover to carry out computations knowing these
secret evaluation points in advance.

Circuit: : At the core of every Groth16 proof lies
an Arithmetic Circuit, which serves as the basis for
verifying a claim. This circuit is designed such that
it is computationally difficult to reverse-engineer or
solve given only the output, but easy to verify when
both the input and output are known. To illustrate,
consider the simple equation x2 + x + 1 = 3 The
prover will know the solution to this circuit (in this
case, x = 1), and the verifier’s task is to confirm
the prover’s knowledge of the solution without the
prover revealing x, as depicted in Figure 2.

Rank-1 Constraint System:

3

t3

+

t2

×

t1

x x

x

1

Fig. 2. Arithmetic Circuit tree with gates t1, t2, t3 representing the
equation x2 + x+ 1 = 3.

1) Each gate in the circuit represents a constraint.
In this case, the constraints are as follows:
t1 = x ∗ x, t2 = t1 + x, and t3 = t2 + 1

2) In addition to the constraints, there is also
an execution trace, which is a vector of the
variables [1,x,t1,t2,t3]. The execution trace
represents the intermediate values calculated
at each step of the circuit. For the given
solution, the trace would be: [1,1,1,2,3].

3) Finally, the prover will have three matrices A,
B, and C, the contents of which are shown in
Figure 3.

A =

0 1 0 0 0
0 1 1 0 0
1 0 0 1 0


B =

0 1 0 0 0
1 0 0 0 0
1 0 0 0 0


C =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


Fig. 3. Matrices A,B, and C for the example Groth16 circuit.

These are not arbitrary matrices; they satisfy
the equation At ∗ Bt = Ct. By examining
the first row of each matrix, we can verify
that A0t ∗ B0t = C0t, which simplifies to
x ∗ x = t1 representing our first constraint.

This system of equations is known as the
Rank-1 Constraint System, which encodes the
constraints in matrix form.

Quadratic Arithmetic Programs: Next, the ma-
trices A,B, and C are converted into polynomial
vectors A′, B′, and C ′ through Lagrange Interpo-
lation. These polynomials satisfy the relationships
A′(1) = A[0], A′(2) = A[1], and so on. Given that
tA ∗ tB = tC, we can express this equation as
polynomials using Quadratic Arithmetic Programs
(QAPs) such that P (x) = tA′(x)∗ tB(x)− tC(x) =
0. This polynomial will have roots at x = 1, 2, 3,
corresponding to the original solution values. More-
over, this equality implies the existence of a poly-
nomial vector H(x) such that P (x) is divisible by
L(x), where L(x) = (x−1)(x−2)(x−3) represents
the product of the roots. Thus, the critical check in
Groth16 is to verify that:

tA′(x) ∗ tB′(x) = tC ′(x) +H(x)L(x).

Evaluation Through Schwartz-Zippel Lemma:
Lemma 3.1 (Schwartz-Zippel Lemma): Let

f(x1, x2, . . . , xn) ∈ F[x1, x2, . . . , xn]

be a non-zero polynomial over a field F with total
degree d ≥ 0. Let S ⊆ F be a finite subset [4].

Suppose r1, r2, . . . , rn ∈ S are chosen indepen-
dently and uniformly at random. Then,

Pr[f(r1, r2, . . . , rn) = 0] ≤ d

|S|
.

Lemma 3.1 states that, given two polynomials
evaluated at a random point τ , if both polyno-
mials yield the same result, there is a very high
probability that they are equivalent. By leverag-
ing discrete logarithms to obscure the evaluation
points, the prover can perform their calculations for
A′(τ), B′(τ), C ′(τ), and H(τ) without ever uncov-
ering the value of τ .

IV. ANONYMOUS AUTHENTICATION PROTOCOL

A. Design Principles
The goal of our design is to create the Client-

Service authentication without revealing user in-
formation to the KDC. This inherently implies a
protocol with a stronger privacy policy, as the KDC

can no longer keep track of a log of all user-service
usages.

However, the protocol must still allow services to
correctly distinguish between different clients and
prevent impersonations.

Moreover, we want to maintain all the desirable
properties of Kerberos 5 as described in II; namely,
passwords should never be transmitted in plaintext,
and one can reuse an already-generated TGT nu-
merous times, with the client only inputting the
password once per TGT lifespan.

B. Initial Design and Problems

The above principles might seem contradictory -
how do we modify the Kerberos protocol such that
services have more information about the client than
the KDC itself? Our solution lies in zk-SNARKs.

Using a zk-SNARK, the client can send a proof
that he knows a secret without revealing what the
secret is. An initial idea is to leverage this property
of verifying that a client is in the valid subset of
clients, without revealing its username is as follows:

Attempt 1 - Roots of Polynomials
KDC Setup: The KDC chooses N large numbers
and creates a polynomial with these N roots,
ensuring that the polynomial is hard to factor.
The KDC builds and publishes the circuit
corresponding to this polynomial.

Client Setup: The KDC securely shares one of
the roots w of the polynomial with the client.

Authentication: The client sends a zk-SNARK
proof that he knows w such that w is a root of the
public polynomial. (Knows input w of the circuit
such that P (w) == 0).

This method allows clients that have securely set
up with the KDC (hence, in the valid subset of
clients) to authenticate without revealing informa-
tion about themselves.

However, it has serious drawbacks. First, in order
to remove, add, or modify clients, the polynomial
needs to be modified, forcing the KDC to build a
new circuit that it has to share with all the clients.
Moreover, the KDC also needs to select new secret

Fig. 4. Example of an N=8 Merkle Tree where the Merkle leaves
are the commitments H(wi) of clients’ secrets. The circuit Merkle-
ComputeRoot takes as inputs (nodes colored purple) a leaf and the
siblings of the path to compute the Merkle Root. In the example,
MerkleComputeRoot takes as input H(w3) and the path of siblings
[H(w4), H(1||2), H(56||78)] to output the root H(1234||5678).

ws to all the clients: if it were to just modify a few
roots at a time, it is computationally fast to find
the GCD of the new polynomials with the previous
polynomial and find what were the modified roots.
Having to renew every secret for every modification
to the client list makes this method completely
impractical.

Secondly, while the KDC has authenticated the
validity of possessing w, the symmetry of all clients
implies that there is nothing that allow services to
distinguish between clients. Most standard services
require this distinction.

C. Allowing efficient userbase scalability

Notice that the circuit of Attempt 1 has a structure
that depends on the secrets. If a secret is modified,
the circuit completely changes. Instead, we must
choose a circuit such that the secrets are not built-in,
but rather to be taken as possible inputs.

The output, however, must depend on all the
possible secrets. If it depended on only a subset
of secrets, a valid proof would leak knowledge
on which clients have authenticated. Of course,
any individual client only has access to their own
secret; hence, the other inputs to the circuit must
be values derived from the other client secrets. For
convenience, this will be done with hashes.

To efficiently achieve these properties, consider
a Merkle Tree where the leaves are commitments,
H(wi), of the clients’ secrets, wi, as seen in Figure

4 [3]. The root of the Merkle Tree depends on
hashes of all the secrets, and yet every single node
of the tree can be made public without revealing the
secrets. The following algorithm becomes apparent
as a great candidate:

MerkleComputeRoot(leaf, siblings):
node = leaf
for sibling in siblings:

node = H(node + sibling)
return node

Where siblings is a list of the siblings of the
nodes in the path from the leaf to the root. This
leads us to a new circuit that solves our problem
of adding clients. In particular, the client will now
send a zk-SNARK proof that they possess a secret
w such that MerkleComputeRoot(H(w), siblings)
outputs the root.

Attempt 2 - Merkle Tree
Client Setup: Client selects some secret w.
In practice, w can be username||password.
Commit to this secret, comm = H(w).

KDC Setup: The KDC creates a Merkle Tree
with a fixed number N of leaves. Every leaf is
a commitment comm of some client secret w,
or otherwise some default value (0). The Merkle
Tree is made public.

Authentication: The client sends a zk-SNARK
proof that he knows the inputs, namely w, to the
circuit implementing MerkleComputeRoot(H(w),
siblings) == root.

Notice that adding or removing clients requires
modification of the leaves of the Merkle Tree,
of which the KDC has full control of. Clients
must continuously update siblings from the public
Merkle Tree; however, this is a list of only logN
nodes. Retrieving these values securely can be
achieved with PIR, Oblivious RAM, or by serving
the Merkle Tree content through some server who
the client doesn’t mind revealing their identity to.

D. Services’ distinguishability of clients

Most services require some way to distinguish
between clients, something Attempt 2 does not
support. The KDC receives proof that the client
is valid. However, it cannot include the client’s
username in the ticket since, by design, the KDC
does not know the username.

The solution is to have the KDC include a
pseudonym that only the service can parse. We
generate the pseudonym by concatinating a nonce
and hashing the result. This gives us

nym = H(comm||nonce),

where comm = H(w) is a leaf of the public Merkle
Tree and a different nonce can be chosen randomly
for every authentication request. The client sends
nym to the KDC with a proof that it was correctly
computed with the same secret w that generated the
authentication proof. The KDC includes nym in the
ticket, but is unable to identify the client.

The client can reveal their identity to a service
by sending both comm and nonce to the service,
and the service can check that the nym in the
ticket corresponds to the correct hash.

Merkle Tree with Pseudonyms
Client Setup: (Unchanged from Attempt 2)

KDC Setup: (Unchanged from Attempt 2)

Authentication: The client chooses a random
nonce and generates pseudonym

nym = H(w||nonce)

. Then, the client sends a zk-SNARK proof that
they know the inputs, specifically w, to the circuit
implementing

MerkleComputeRoot(H(w), siblings) == root

and
H(w||nonce) == nym.

Distinguishability: The KDC includes nym in the
ticket. To allow a service to be able to distinguish
them from other clients, the client sends comm
and nonce, and the service checks that the con-
catenated value hashes to nym.

In addition, we want cooperating services to not
be able to tell whether a given client has used both
services (i.e. services S1 and S2 can’t distinguish
whether Alice is using S1 and Bob is using S2, or
if Alice is using both S1 and S2). A solution to
this problem is to utilize a different pseudonym for
every service,

nymS = H(H(w||service)||nonce).

However, note that this method requires sending
many proofs to the KDC to generate the TGT.
Nonetheless, this remains practical if you limit the
number of pseudonyms in a TGT to only services
that the client is most likely to visit in a given
session. The entire Anonymous Authentication Ker-
beros Protocol is depicted in Figure 5.

V. IMPLEMENTATION

We chose to build our modified version of Ker-
beros from scratch, focusing only on the essential
components: a client and a Key Distribution Center
(KDC).

a) Client: The client first attempts Zero
Knowledge Authentication by creating a proof from
the witness vector and two random field elements.
Once authenticated, the client will connect to the
server and complete key exchange with the KDC
to generate a shared key. The KDC will present a
ticket-granting ticket to the client, allowing them to
connect to various services using Kerberos.

b) KDC: The KDC will authenticate the client
by verifying the client’s generated proof. If the KDC
successfully authenticated the client, then it will
complete the key exchange with the client. Once a
shared key is established, then the KDC will present
a ticket-granting ticket for the client to use.

A. Zero Knowledge Authentication

We utilized the gnark library for our Groth 16
scheme. A circuit was decided by the client and
server prior to authentication. The client is then
given a solution to that circuit that the server has
no knowledge of. Using the Groth 16 protocol of
transforming the circuit into constraints and creating
commitments based on the vectors of polynomial

Fig. 5. Diagram of the Anonymous Kerberos Authentication Protocol. The client anonymously authenticates and provides a correct pseudonym
by sending zk-SNARK proofs. The client also shares a session key for User-AS symmetric encryption. This communication is encrypted
with a public key provided by the KDC during setup. If the proof is correctly verified, the AS replies with a ticket-granting-ticket (TGT) and
an session key for User-TGS symmetric encryption. Possession of the TGT implies that the client was correctly validated by the AS; it also
includes all relevant nymS and expiration values. Once a client wants to authenticate with a service, it requests a Service Ticket (ST) with
the Ticket Granting Service (TGS) by sending the TGT along side the service it wants to connect. The client uses the ST to authenticate
with the Service, and also sends H(w——service) and nonce for the Service to distinguish between users.

stated in section 3B, the client will then send his ar-
guments over to the verifier. The verifier would then
evaluate his commitments and will either approve or
deny the client to continue with the Key exchange
that initiates the next steps of communication.

B. Key Exchange

We use a Diffie-Hellman Key Exchange protocol
to generate a shared key between the client and
KDC without needing to send the key across the
network for confirmation, unlike how a classical
password would work [5]. To implement this key

exchange, we utilize the Go ”gob” package to create
encoders and decoders to assist in processing the
public keys for the client and KDC. The resulting
shared key will play a similar role to the client’s
password in the original Kerberos model.

C. Tickets

The KDC generates a ticket granting ticket which
is encrypted using AES golang library and the
private key of the TGS, hence only the TGS will
be capable of decrypting. When requesting access

to a service, the TGS encrypts the ticket with AES
and the key of the service.

CONCLUSION

The Kerberos authentication scheme has had far-
reaching impact since its creation. Originally devel-
oped by MIT to serve its student body, Kerberos
has since been adopted more broadly and is now
supported by major operating systems, including
Windows and macOS. Its design is intuitive: a
centralized KDC handles client authentication and
facilitates secure, direct access between clients and
services.

Inspired by the mathematical elegance of zero-
knowledge authentication schemes, particularly
Groth16, our goal is to develop a more secure and
privacy-preserving variant of the Kerberos protocol.
Unlike the traditional model, our revised scheme
ensures that the central KDC has no ability to
link users to their service activity. Moreover, even
if the KDC were to be compromised, user cre-
dentials would remain secure and protected. These
enhancements provide clients with stronger privacy
guarantees and greater confidence in the security of
their personal information.

FUTURE WORK

Currently, our proposed scheme incurs greater
computational overhead compared to the traditional
Kerberos protocol. One major source of this in-
creased cost is the zero-knowledge authentication
protocol, which introduces complexity that grows
linearly with the size of the underlying arithmetic
circuit. A more significant bottleneck arises in the
management of user information, which is stored in
a Merkle Tree. Any update, addition, or deletion
of user data fundamentally alters the content of
the tree, resulting in changes to the authentication
paths and increased computational burden. As part
of future work, we aim to further refine our design
to reduce these computational costs and bring per-
formance closer to that of the original Kerberos sys-
tem, while retaining the added privacy and security
benefits.

CONTRIBUTIONS AND ACKNOWLEDGMENTS

All three group members contributed equally to
every aspect of the project, from implementing the

protocol modifications in Go to writing and editing
this paper.

We would like to thank the instructors and course
staff for their guidance throughout this project
and their excellent instruction, which gave us the
foundational knowledge to explore and apply these
advanced concepts to Kerberos.

REFERENCES

[1] J. Kohl and C. Neuman, “ The Kerberos Network Authen-
tication Service (V5),” Network Working Group, RFC1510,
September 1993.

[2] J. Groth, “On the Size of Pairing-based Non-interactive Argu-
ments,” in International Association for Cryptologic Research,
Springer-Verlag, 2016.

[3] O. Kuznetsov, A. Rusnak, A. Yezhov, et al. “Merkle Trees
in Blockchain: A Study of Collision Probability and Security
Implications,” in Internet of Things Volume 26, July 2024.

[4] A. Atserias and I. Tzameret. “Feasibly Constructive Proof of
Schwartz-Zippel Lemma and the Complexity of Finding Hitting
Sets,” in arXiv, November 2024.

[5] N. Li. “Research on Diffie-Hellman key exchange protocol,”
in 2nd International Conference on Computer Engineering and
Technology, June 2010.

[6] C. Chen, E. Hong, and L. Turino, “ZK-Kerberos”.

https://github.com/evanhong7384/ZK-Kerb

	Introduction
	Kerberos Overview
	The Three Components: Client, KDC, Service
	Client
	Key Distribution Center
	Service

	Protocol
	Lack of Zero Knowledge and Security Concerns

	Zero Knowledge Design
	zk-SNARK's Requirements
	Groth16

	Anonymous Authentication Protocol
	Design Principles
	Initial Design and Problems
	Allowing efficient userbase scalability
	Services' distinguishability of clients

	Implementation
	Zero Knowledge Authentication
	Key Exchange
	Tickets

	References

