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Abstract

We introduce PathDHES, a Directed Hypergraph En-
cryption Scheme designed to support efficient and privacy-
preserving shortest B-path and distance paths queries on
encrypted hypergraph data. Motivated by the growing use
of hypergraphs in fields such as biology, operations research,
and machine learning, our work extends the structured en-
cryption paradigm to capture complex hypergraph seman-
tics. Building on the PathGES scheme for graphs, we adapt
its framework to directed hypergraphs by leveraging the
Shortest B-Path Tree (SBT) algorithm. We outline efficient
algorithms for B-path and distance path recovery, and pro-
pose adaptations of heavy-light decomposition to accommo-
date the output of SBT. Our construction is implemented
and evaluated on a sample hypergraph, demonstrating the
feasibility of secure and expressive queries over encrypted
hypergraph-structured data.

1 Introduction

Hypergraphs, a generalization of graphs, are increasingly
used to store data in fields including biology, operations re-
search, machine learning [GLPN93, FHJ+20, FYZ+19]. In
light of potential storage constraints, the outsourcing of
hypergraph databases to servers may be a viable option
[Ior10]. To protect this data and prevent an entire encrypted
database from being downloaded during each query, struc-
tured encryption (STE) can be used [CK10]. Under STE,
structured data is encrypted such that it can be efficiently
queried by a user, while leaking some bounded amount of
information. However, this scheme offers an efficiency speed-
up over Fully Homomorphic Encryption [GKT21].

To the best of our knowledge, hypergraph encryption
schemes, where encryption and queries are performed on hy-
pergraphs, have not been explored. But, with the numerous
applications of hypergraphs in fields where security might be
crucial, such encryption is increasingly important [KCYS23].

1.1. Hypergraph Encryption Applications

In a directed hypergraph, edges are called hyperarcs.
They have a head and a tail consisting of vertices. Due to
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Figure 1.1: Blender Shader Nodes: Visualizes the computa-
tion of a table material as a hypergraph [Fou17].

their complexity, directed hypergraphs allow the modeling of
data structures that standard graphs cannot represent: one
example of this is group interactions [KCYS23] like email
exchange [CM20], citation networks [YGA+21], and bitcoin
transactions [RJK+17]. In email exchanges, a set of emails
can be represented as a hypergraph [CM20], where vertices
correspond to people and each hyperarc represents an email,
with the senders in the head and the receivers in the tail.
Similarly, citation networks [YGA+21] can be modeled as
hypergraphs, where vertices represent researchers and each
hyperarc corresponds to a citation, with the head containing
the authors of the citing paper and the tail containing the
authors of the cited paper.

We provide an intuitive use-case for hypergraphs. Con-
sider a user who wants to model a complex process flow,
such as material computations in the 3d rendering software,
Blender. In this case, hypergraphs provide a useful and
efficient way to represent these processes, far beyond the
capabilities of traditional graphs. Such a representation is
shown in Fig. 1.1 for table material in the 3d scene [Fou17].

Here, the vertices represent data. Vertices without in-
coming hyperarcs correspond to unprocessed data, such as
object properties and textures. Vertices without outgoing
hyperarcs store the result of the computation, representing
the final material representation. Analogously, intermedi-
ate vertices encode partially processed data or temporary
resources.
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With this view, hyperedges represent transformations or
processing operations. Since each hyperedge connects sev-
eral vertices from its tail to a single vertex from its head,
this can be seen as input data needing to be simultaneously
processed for a single operation to determine the output.
Now, each operation has its own associated costs, such as
processing time (i.e., CPU/GPU resources), memory usage,
computational complexity, etc.

Intuitively, the cost of a vertex is the minimum process-
ing time at which its data is available for further computa-
tion. All input vertices’ data must be available to process a
hyperarc and calculate the data of its output vertex. There-
fore, the output vertex’s processing time is determined by
the maximal processing time of the input vertices plus the
hyperarc’s processing time. Notice that the processing time
we discuss directly corresponds to the formal definition of a
distance in a hypergraph, which is formally defined in Sec-
tion 4.

Then, a so-called B-path between an input and an output
node is just a sequence of operations that transforms initial
resources into final outputs, or, in the case of Blender, a ren-
dering pipeline between an input file and the output image.
A formal definition of a B-path can be found in section 4 as
well. The shortest B-path between two nodes represents the
most efficient way to get the desired results from the given
input. Finally, the distance path between the two nodes is
the most costly sequence of individual operations contained
in this shortest B-path.

This interpretation is useful for tasks beyond Blender, in
which users might want to be able to recover paths contained
in the hypergraph without revealing what they’re search-
ing for to the outside world. Think of healthcare treatment
planning: a patient might have multiple interconnected con-
ditions and a healthcare provider wants to find the optimal
treatment combinations. However, the patient might not
want to reveal their conditions, and the hospital might not
want to expose their proprietary treatment protocols or let
insurance companies learn about specific medical queries.
Then, private hypergraph queries would allow doctors to
find a way to reach the desired health outcomes given the
patient’s current conditions without revealing their full med-
ical profile. In short, private hypergraph queries could pro-
vide a way to administer personalized treatment planning
while maintaining strict medical privacy. This motivates
the need for Hypergraph Encryption Schemes.

1.2. Structure of the Paper

In this paper, we define a hypergraph encryption scheme,
with queries capturing a hypergraph-notion of SPSP. We
begin by briefly discussing graph encryption schemes (Sec-
tion 2) and the PathGES scheme (Section 3), which will
subsequently be transformed into a hypergraph encryption
scheme. Then we formally define hypergraph terminology
including path generalizations i.e., B-paths and distance

paths (Section 4) and present an algorithm for efficiently
computing these shortest paths (Section 5).

Next, we layout the goals and definitions for a hy-
pergraph encryption scheme (Section 6) and present our
scheme, PathDHES - the generalization of PathGES (Sec-
tion 7). We conclude with a description of the implementa-
tion of our scheme (Section 8).

1.3. Contributions

• Samuel Florin: Worked on adapting the framework and
security definitions of a graph encryption scheme to di-
rected hypergraphs, as well as discussing possible ap-
plications and datasets for the scheme.

• Andrei Marginean: Discussed practical applications of
hypergraphs in intuitively modeling complex processes
visually, and offered a concrete interpretation within
the context of the Blender Shader Node example. Pro-
vided potential motivations for private path queries
(both B-paths and Distance Paths) in directed hyper-
graphs. Organized the GitHub repository.

• Andrei Marginean and Lukas Rapp: Implemented our
scheme in Python on top of the original PathGES im-
plementation.

• Lukas Rapp and Anastasiia Struss: Worked on the for-
mal adaptation of the PathGES encryption from graphs
to directed hypergraphs, including distance path and
shortest B-path encryption.

• Lukas Rapp: Generated hypergraph datasets, including
the Blender Shader Node example.

• Anastasiia Struss: Provided the theoretical framework
for shortest-path queries in directed hypergraphs and
proposed two procedures: SBpath recovers the shortest
B-path and dist path recovers the distance path from
the output of the SBT algorithm.

1.4. Future Directions

In this paper, we propose a hypergraph encryption
scheme that enables private shortest B-path queries on hy-
pergraphs. Our scheme builds on the state-of-the-art graph
encryption scheme PathGES, whose security has already
been evaluated.

We therefore expect that our scheme fulfills similar se-
curity guarantees. Due to the schemes’ technical depth, a
thorough analysis is out of this project’s scope and subject to
further work. Another interesting direction for further work
is an analysis of our schemes’ storage and search complexity
on the server side, which we again expect to be similar to
PathGES.

2 Graph Encryption Schemes

One type of STE is a graph encryption scheme (GES)
where the structured data represents a graph and queries
on the encrypted data reveal underlying properties of the
graph [CK10,GKT21,MKNK15]. For example, a GES for
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single-pair shortest path (SPSP) queries allows for inputs
of the form (u, v) for vertices u, v, outputting the shortest
path between those two vertices [KB24, LGZ+22]. Such a
scheme is secure when, even if the graph is known to an
adversary, only little information (and ideally no informa-
tion) about the user’s queries is leaked. For example, in the
case of a GES for Google Maps data, with queries providing
the shortest journey between a start and end destination,
the road network may be public but we would want users’
destinations to remain protected [FGPT24b].

Substantial research has explored secure GES for the
SPSP query, including PathGES [FGPT24b], which offers
a more secure scheme with similar efficiency as compared to
previous schemes [GKT21].

We formalize this notion of a Graph Encryption Scheme.

Definition 2.1 A Graph Encryption Scheme
(GES) consists of the following algorithms:

• KeyGen : 1λ → K: probabilistically outputting a se-
cret key K given a security parameter λ.

• Encrypt : (K,G) → ED encrypting a graph database
G given a key K.

• Token : (K, q) → tk which generates a search token
tk given a key and query q.

• Search : (ED, tk) → resp which applies the search
token to the encrypted database, returning a response.

• Reveal : (K, resp)→ m which converts a response to
a plain-text message, given a secret key

Generally, only the Search algorithm is performed by the
server, with the others performed locally by the client. In
this way, queries can be performed without the graph need-
ing to be decrypted nor the query revealed to the server.
A graph encryption scheme, therefore, ensures only the en-
crypted database and query, as well as the encrypted plain-
text, are handled by the server or exchanged by the client.
This structure attempts to minimize the possible leakage of
a user’s queries. We will formalize this notion of security
when discussing the generalization of such a scheme to act
on directed hypergraphs. First, we describe a state-of-the-
art graph encryption scheme that will serve as the basis for
the remainder of this research.

3 PathGES

PathGES is a graph encryption scheme introduced by
Falzon et al. to handle shortest-path queries [FGPT24b].
Here, the query q is therefore a pair of vertices (u, v) and
the message m should be the shortest path between u and v
in the given graph G, with paths taken to be undirected and
unweighted. This scheme was developed in response to an
attack for a previous shortest-path graph encryption scheme,
called GKT [GKT21], whereby information on paths with
the same destination node and overlapping edges on the
shortest path could be leaked [FP22].

To address this issue, the critical addition of PathGES is

the heavy-light decomposition (HLD) [ST81], which can be
used to partition a tree into disjoint paths. HLD is applied
to the single-destination shortest path (SDSP) [FGPT24b]
trees, with these paths further decomposed into smaller seg-
ments of consistent length called canonical fragments. The
key cryptographic tool used in graph encryption scheme are
encrypted multimaps (EMM), which can either be response-
revealing, or response-hiding. A multimap simply denotes
a map from labels to a set of values, rather than a sin-
gle value. Here, we define these two types of EMMs and
give an overview on how PathGES uses these tools to con-
struct a graph encryption scheme for shortest-path queries
[FGPT24b]. The first, which is response-hiding, maps un-
encrypted labels to encrypted values, whereas the second,
which is response-revealing, maps encrypted labels to unen-
crypted values. We now formalize these definitions.

Definition 3.1 A response-hiding encrypted mul-
timap consists of the following algorithms:

• KeyGen : 1λ → K: probabilistically outputting a se-
cret key K given a security parameter λ.

• Encrypt : (K,M) → EM encrypting a multimap M
given a key K.

• Token : (K, lab)→ tk which generates a search token
tk given a key and label lab.

• Get : (EM, tk)→ resp which applies the search token
to the encrypted multimap, returning a response.

• Reveal : (K, resp) → {vali}i∈I which converts a re-
sponse to a plain-text set of values {vali}i∈I , given a
secret key

Definition 3.2 A response-revealing encrypted
multimap consists of the following algorithms:

• KeyGen : 1λ → K
• Encrypt : (K,M)→ EM
• Token : (K, lab)→ tk
• Get : (EM, tk) → {vali}i∈I which uses the search
token for the encrypted multimap to get a plain-text
set of values {vali}i∈I , given a secret key

In this sense, the definition of a response-hiding en-
crypted multimap looks similar to the structure of the graph
encryption scheme above, whereas the response-revealing
encrypted multimap processing search tokens directly on the
server without using an encrypted response.

Now, PathGES, given a graph G, first precomputes the
SDSP trees for each vertex, and then applies the HLD to
each of these trees, which are then further fragmented into
canonical fragments. Next, a response-revealing EMM M1

maps the queried pair of vertices to some set of encrypted la-
bels for the canonical fragments that form the shortest path
between these two labels. Then, a response-hiding EMMM2

maps these encrypted labels back to the actual fragment.
Both of these encrypted multi-maps can be hosted on

the server. As such, when a user wants to query some pair
of vertices, they can generate a search token for the query
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and send it to the server. The server can use the encrypted
multimaps to compute the encrypted fragment labels from
M1, and then the encrypted fragments themselves from M2,
which are then sent back to the user. The user can decrypt
these fragments and piece them back together to get the
desired shortest path.

PathGES avoids the attack to which GKT was vulnera-
ble through this use of the heavy-light decomposition, which
reduces information leakage while preserving efficiency ben-
efits [FGPT24b]. We reap similar benefits in our similar
construction of PathDHES, though this scheme must be
adapted to fit the unique structure of the shortest-path prob-
lem for hypergraphs.

4 Hypergraphs

In this discussion, our immediate focus is directed hy-
pergraphs, as this is the only type that is important for
our encryption scheme. However, this does not imply that
undirected hypergraphs cannot be used. The present study
leaves undirected hypergraphs encryption schemes for fu-
ture research directions. We mainly refer to [GLPN93] for
terminology and definitions associated with hypergraphs.

Definition 4.1 • Let V be a finite set of vertices, and
E a set of ordered pairs E = (X,Y ), where X,Y ⊆ V
are subsets of vertices, then elements of E are called
hyperedges (or hyperarcs) and H = (V, E) is a di-
rected hypergraph. T (E) := X and H(E) := Y are
tail and head of E, respectively.

• The backward star BS(v) of a vertex v ∈ V is the
set of all hyperedges, whose head contains v:

BS(v) = {E ∈ E | v ∈ H(E)}.

Analogously, the forward star is

FS(v) = {E ∈ E | v ∈ T (E)}.

For the sake of clarity, we accompany the above definition
with Example 4.2 and Figure 4.1.

Example 4.2 Let V = {1, 2, . . . , 13} be a set of vertices
and E = {E1, . . . , E7} with

E1 = ({1}, {2, 3}), E2 = ({2}, {4, 5}),
E3 = ({2, 3}, {6, 7}), E4 = ({5, 6}, {10}),
E5 = ({8, 9, 10}, {4}), E6 = ({11}, {12}),
E7 = ({12, 13}, {11})

be a set of hyperarcs. Then H = (V, E) is a directed hy-
pergraph.

The backward star BS(4) of vertex 4 consists of hyper-
arcs E2 and E5, whereas the forward star FS(4) is empty.

Using our hypergraph encryption scheme, one can en-
crypt a directed hypergraph and outsource it to an untrusted

Figure 4.1: A directed hypergraph

server. In the event that the user is interested in determin-
ing a shortest path between two vertices, they can create
a token to be sent to the server. The server responds ac-
cording to the token and, subsequently, the user is able to
reconstruct the desired shortest path. But what are paths
in directed hypergraphs? We are interested in two types of
paths, and we will start with a simple one.

Definition 4.3 A path Puv of length q in a directed hy-
pergraph H = (V, E) is a sequence

u = v1, Ei1 , v2, Ei2 , . . . , Eiqvq+1 = v,

where
• v1, . . . , vq+1 ∈ V are vertices;
• Ei1 , . . . , Eiq ∈ E are hyperarcs;
• u ∈ T (Ei1), v ∈ H(Eiq ) and vj ∈ H(Eij−1) ∩ T (Eij )
for 2 ≤ j ≤ q.

We call Puv simple if all hyperarcs Ei1 , . . . , Eiq are dis-
tinct. If v ∈ T (Ei1), then Puv is said to be a cycle.

As before, we visualize the definition and give an exam-
ple.

Example 4.4 Let H be the directed hypergraph discussed
in Example 4.2. Then

2, E2, 5, E4, 10 and 2, E3, 6, E4, 10

are two simple paths of length 2 from 4 to 10. Notice that

2, E2, 4, E5, 10

is not a path from 4 to 10. Moreover,

13, E7, 11, E6, 12

is a cycle, although the vertices in this path are pairwise
distinct.
A B-path is a more sophisticated notion of a path in

a directed graph. Here is the point where we deviate
from our primary source [GLPN93] related to hypergraphs.
While studying hypergraphs, we encountered a deficiency
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Figure 4.2: A weighted hypergraph

in the intuitive basis of the definition provided in the work
[GLPN93]. Additional research led us to [NPA01], which
confirmed that the initial definition given in [GLPN93] is
too weak and is correct only if additional assumptions on
hypergraphs are imposed. Here we use a more natural and
intuitive definition of B-paths. We start by defining the B-
connection using induction.

Definition 4.5 Let u be a vertex of a directed hypergraph
H = (V, E). Then

• u is B-connected to itself;
• if for some E ∈ E all the vertices in T (E) are B-
connected to u, then each node v ∈ H(E) is B-
connected to u as well.

Now we can define B-paths.

Definition 4.6 A B-path from vertex u to vertex v in a
directed hypergraph H is a minimal sub-hypergraph Huv =
(Vuv, Euv) of H i.e.

• Euv ⊆ E;
• u, v ∈ Vuv =

⋃
(Xi,Yi)=Ei∈Euv

(Xi ∪ Yi) ⊆ V ;
where v is B-connected to u.

Example 4.7 Let H be the directed hypergraph from Ex-
ample 4.2. Then H1,7 = (V1,7 = {1, 2, 3, 6, 7}, E1,7 =
{E1, E3}) is a B-path from 1 to 7.

Thus, if we find a B-path Huv from u to v in a directed
hypergraph, by the very definition of B-connection, we know
that if v is the head of a hyperarc E of Huv, then all vertices
from the tail of E are also B-connected to u.

Now we return back to [GLPN93] to discuss weighted
directed hypergraphs.

Definition 4.8 In a weighted hypergraph each hyperarc
E is assigned a positive real value w(E).

Definition 4.9 Let H = (V, E) be a directed weighted hy-
pergraph and r ∈ V a vertex. The distance DHr is de-
fined recursively for r and all v ∈ V \ {r} B-connected to
r:

DHr
(r) := 0;

DHr
(v) := min

E∈E∩BS(v)
{w(E) + max

y∈T (E)
{DHr

(y)}}.

A simple path between r and v, whose weight is equal to
DHr (v) is called a distance path between r and v.

1 // Initialization

2 for each v in V do D(v) := ∞;

3 for each Ej ∈ E do kj := 0;

4 Q := {r}; D(r) := 0;

5
6 // Main loop computing D and Pv
7 while Q ̸= ∅
8 select and remove v ∈ Q;

9 for each Ej in FS(v) do

10 kj := kj + 1;
11 if kj = |T (Ej)| then
12 f := maxu∈T (Ej){D(u)};
13 for each u ∈ H(Ej) such that

D(u) > w(Ej) + f do

14 if u /∈ Q then

15 Q := Q ∪ {u};
16 D(u) := w(Ej) + f; Pv[u] := Ej;

17 return D,Pv;

Figure 5.1: Procedure SBT(H = (V, E), r ∈ V )

5 SBT Procedure

Our main goal is to propose a hypergraph encryption
scheme based on PathGES [FGPT24b]. Two crucial parts
of PathGES are the SDSP and heavy-light decomposition
(HLD) algorithms. Note that the standard SDSP algorithms
are specifically designed for graphs and cannot be easily
adapted for hypergraphs. In [GLPN93] we found the so-
called SBT algorithm for finding minimum weight B-paths
in a weighted hypergraph. By slightly extending it, it is
possible to construct an alternative to the SDSP algorithm
for hypergraphs.

Let H = (V, E) be a weighted directed hypergraph and r
a vertex. In the SBT procedure, the so-called predecessor
function is used: for v ∈ V \ {r}, Pv(v) points to the
hyperarc E ∈ BS(v) which precedes node u in the shortest
B-path from r to v.

In the initialization step of the SBT procedure, the dis-
tance value of every vertex except for the root is set to infin-
ity. In the main loop, we will update the value of any vertex
which is B-connected to r. The set Q will always contain
vertices B-connected to r, whose forward star has not been
examined yet. Finally, variables kj will help us to make sure
that we give distance values to the vertices from the head
H(Ej) only if all vertices from the tail T (Ej) are already
B-connected to r. We will demonstrate the functionality of
the SBT procedure using an example.

Example 5.1 Consider a directed hypergraph H = (V, E)
where V = {v2, v4, v5, v6, v10} is a set of vertices and E =
{E2, E4, E8, E9} with

E2 = ({v2}, {v4, v5}), E4 = ({v5, v6}, {v10}),
E8 = ({v2}, {v5}), E9 = ({v2}, {v6})

is a set of hyperarcs. The values w(E2) = 2, w(E4) =
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1, w(E8) = 1, w(E9) = 3 make H to a valued hypergraph.
Set r := v2. We will compute values of the predecessor
function and the distance for all vertices v ∈ V step by
step using the SBT procedure.
0. In the initialization step we set

vi v2 v4 v5 v6 v10
D(vi) 0 ∞ ∞ ∞ ∞ ,

Ej E2 E4 E8 E9

kj 0 0 0 0
,

Q := {v2}.

1. Set u := v2 and update Q = {}.
(a) Take E2 ∈ FS(u) = {E2, E8, E9}. Update

Ej E2 E4 E8 E9

kj 1 0 0 0
.

Since k2 = 1 = |{v2}| = |T (E2)|, set

f := max
y∈T (E2)={v2}

{D(y)} = D(v2) = 0.

For each y ∈ H(E2) = {v4, v5} holds D(y) =∞
and y /∈ Q. Hence update Q := {v4, v5} and

vi v2 v4 v5 v6 v10
D(vi) 0 2 2 ∞ ∞ ,

Pv[v4] := Pv[v5] := E2.

(b) Take E8 ∈ FS(u) = {E2, E8, E9}. Update

Ej E2 E4 E8 E9

kj 1 0 1 0
.

Since k8 = 1 = |{v2}| = |T (E8)|, set

f := max
y∈T (E8)={v2}

{D(y)} = D(v2) = 0.

For each y ∈ H(E8) = {v5} holds D(y) =
D(v5) = 2 > 1 + 0 = w(E8) + f and y ∈ Q.
Hence Q stays unchanged, but we update

vi v2 v4 v5 v6 v10
D(vi) 0 2 1 ∞ ∞ ,

Pv[v5] := E8.

(c) Take E9 ∈ FS(u) = {E2, E8, E9}. Update

Ej E2 E4 E8 E9

kj 1 0 1 1
.

Since k9 = 1 = |{v2}| = |T (E9)|, set

f := max
y∈T (E9)={v2}

{D(y)} = D(v2) = 0.

For each y ∈ H(E9) = {v6} we have D(y) =∞
and y /∈ Q. Hence update Q := {v4, v5, v6} and

vi v2 v4 v5 v6 v10
D(vi) 0 2 1 3 ∞ ,

Pv[v6] := E9.

2. Set u := v4 and update Q := {v5, v6}. Since
FS(u) = ∅, continue.

3. Set u := v5 and update Q := {v6}.
(a) Take E4 ∈ FS(u) = {E4}. Update

Ej E2 E4 E8 E9

kj 1 1 1 1
.

Since k2 = 1 < |{v5, v6}| = |T (E4)|, continue.
4. Set u := v6 and update Q = {}.

(a) Take E4 ∈ FS(u) = {E4}. Update

Ej E2 E4 E8 E9

kj 1 2 1 1
.

Since k2 = 2 = |{v5, v6}| = |T (E4)|, set

f := max
y∈T (E4)={v5,v6}

{D(y)} = D(v6) = 3.

For each y ∈ H(E4) = {v10} we have D(y) =∞
and y /∈ Q. Hence update Q := {v10} and

vi v2 v4 v5 v6 v10
D(vi) 0 2 1 3 4

,

Pv[v10] := E4.

5. Set u := v10 and update Q = {}. Since FS(u) = ∅,
continue.

6. Since Q = ∅, we are done.
The output of the procedure is

vi v2 v4 v5 v6 v10
D(vi) 0 2 1 3 4

,
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1 // Auxiliary function

2 Bpath_rec(H = (V, E), v ∈ V, Pv,B):

3 B:= {Pv[v]}
4 if T (Pv[v]) = {r}) then return B;

5 else

6 return B ∪
⋃

u∈T (Pv[v]) Bpath rec(H,u, Pv, {});
7 // End of auxiliary function

8
9 if D(v) =∞ then return {};

10 D,Pv := SBT(H, r);

11 return Bpath_rec(H = (V, E), v, Pv,D, {});

1 D,Pv := SBT(H, r);

2 P:=(); u:=v;
3 while u ̸= r:
4 P.add(u, Pv[u]);
5 u:=argmaxy∈T (Pv[u]) D(y);

6 return P.add(r);

7
8
9

10
11

Figure 5.2: Procedures SBpath(H = (V, E), r ∈ V, v ∈ V \ {r}) and dist path(H = (V, E), r ∈ V, v ∈ V \ {r})

Pv[v4] := E2, Pv[v5] := E8,

Pv[v6] := E9, Pv[v10] := E4.

But we still have not said how to obtain the shortest B-
paths from r to vertices v ∈ V \ {r}. We will construct
the shortest B-paths between r and v10 starting from v10
and going backwards. The predecessor function Pv says
that we have to take the hyperarc E4. This hyperarc has
two vertices in the tail T (E4) = {v5, v6}. They have to be
included. Since Pv[v5] = E8, Pv[v6] = E9 and T (E8) =
T (E9) = {r}, the shortest B-path from r to v10 consists
of hyperarcs E4, E8, E9 and all vertices from theirs heads
and tails.
In the above example, we pointed out how to recover the

shortest B-paths using only the predecessor function. Given
a vertex v ∈ V \ {r}, we take the edge E = Pv[v]. Then we
look at all the vertices in the tail T (E). In the next step, we
take the predecessors of these new vertices and iterate. We
stop at the point, when the tail of the current edge is the
singleton {r}. All the computed edges along the way with
their tails and heads build the shortest B-path from r to v.

So far, we have not used the distance function computed
by the SBT procedure at all. In fact, since the output of the
procedure are the distance values from every vertex in the
hypergraph to the root and the values of the predecessor
function, not the shortest B-paths themselves, we have a
much greater flexibility.

In the case when we are interested in a distance path be-
tween r and v ∈ V \{r}, we use Pv and D in a different way.
As before we start by taking the edge E = Pv[v]. Then we
take a vertex from the tail T (E) with the greatest distance.
In the next step, we take the predecessors of this single new
vertex and iterate. We stop at the point, when the tail of the
current edge is the singleton {r}. All the computed edges
and vertices along the way build the desired path from r
to v. In the example above r = v2, E9, v6, E4, v10 = v is a
simple path of weight 4 = d(v10).

Procedures SBpath and dist path in Figure 5.2 use the
output of the SBT procedure to produce a shortest B-path
between two vertices r and v and a distance path between
two vertices r and v, respectively.

6 Hypergraph Encryption Scheme

We can now extend the definition of a Graph Encryption
Scheme naturally to the hypergraph case, allowing users to
query an encrypted directed hypergraph as defined above.

Definition 6.1 A Directed Hypergraph Encryption
Scheme (DHES) similarly to PathGES consists of the
following algorithms:

• KeyGen : 1λ → K
• Encrypt : (K,H) → ED encrypting a hypergraph
database H given a key K.

• Token : (K, q)→ tk
• Search : (ED, tk)→ resp
• Reveal : (K, resp)→ m

Here, these algorithms together allow a client to perform
a query on a hypergraph hosted by a potentially untrusted
server.

Security for a HES is defined under the assumption
of passive adversaries with access to the underlying net-
work. We define a leakage function L = (LS ,LQ), with LS

bounding the amount of information leaked during setup
and LQ bounding the information leaked during queries
[FGPT24b,KB24]. We now define the following two games
under the real-ideal paradigm, for an adversary A, a hyper-
graph encryption scheme Σ, and a security parameter λ:

RealΣ,A(1
λ): The adversary A picked a hypergraph H

and sends it to the challenger. The challenger then produces
K ← KeygenΣ(1

λ) and computes ED ← EncryptΣ(K,H).
ED is then sent toA, who makes some polynomial number of
adaptive queries (q1, . . . , qn), receiving tk ← QueryΣ(K, q)
from the challenger for each query q. After these queries, A
outputs some bit b.

We now let Sim be a simulator and define the next game:
IdealΣ,A,Sim(1

λ): The adversaryA again selects a hyper-
graph H that is sent to the challenger. Now, given LS(H),
Sim constructs and sends ED to A. Now, A makes some
polynomial number of adaptive queries (q1, . . . , qn), receiv-
ing tk ← TokenSim(LQ(H, q), ED) from the challenger for
each query q. After all of these queries, A again outputs
some bit b.

We define Σ as being adaptively L = (LS ,LQ)-sure if

7



there is some simulator Sim running in probabilistic poly-
nomial time such that, for any ppt adversary A and λ ≥ 1,
there is a negligible function µ(λ) such that

|P[RealΣ,A(1
λ) = 1]− P[IdealΣ,A,Sim(1

λ) = 1]| ≤ µ(λ).

7 PathDHES

Our directed hypergraph encryption scheme builds on
the core components of PathGES, specifically its multimap
encryption of path fragments. This approach allows us to
adopt the security analysis techniques from a state-of-the-
art graph encryption scheme whose security has already
been evaluated.

Moreover, due to the fact that we built our scheme on top
of PathGES, we expect the search and storage complexity
of PathDHES to be comparable. A thorough analysis is
subject to future work.

To build our scheme on top of PathGES, we need to
transform the SBT output for each root vertex r ∈ V into
a list of path fragments, which can be stored in multimaps
such that the shortest B-paths can be reconstructed by com-
bining these fragments.

PathGES fragments the output of the SDSP algorithm
for every vertex r in two steps: first, the SDSP output, which
is a tree with root r, is decomposed into edge-disjoint paths
using the HLD. Next, these paths are further decomposed
into canonical fragments. The decomposition in PathGES
is essential to minimize the scheme query leakage. How-
ever, a direct application to hypergraphs is not possible be-
cause the output of the SBT algorithm cannot generally be
represented as a tree, which is a requirement for the HLD
algorithm.

Instead, the SBT output for a hypergraph H with ver-
tices V and root vertex r ∈ V can be represented as a sub
hypergraph Hr of H containing the nodesM⊂ V that are
B-connected to r in the original hypergraph: To be precise,
Hr is the minimal sub hypergraph of H in which every ver-
tex v ∈ M is B-connected to r via the shortest B-path of
H between r and v. Hr can easily be obtained from Pv(·)
by backtracking every vertex inM to the root r. Figure 7.1
gives an example for a sub-hypergraph H1. In this sec-
tion, we present two encryption schemes that transform the
SBT output to trees in a preprocessing step, enabling the
fragmentation with HLD and encryption of B-path queries.

7.1. Distance Path Queries

There are applications in which the complete shortest B-
path between two vertices is not required, as one may only
be interested in the edges that are responsible for the dis-
tance between the two vertices. Since the cost of a hyperarc
in the distance definition (4.9) calculates the maximum over
the cost of all vertices in its tail, the edges and vertices that
are responsible for the distance between two vertices form a
simple path. This path, which we call the distance path

v1

v2 v3 v5

v4

v6v7

v8 v9

Figure 7.1: Example output of the SBT algorithm for a
root vertex 1: the output of the SBT algorithm forms a
sub-hypergraph H1 of the original hypergraph H.

Figure 7.2: Maximal Distance Tree for sub-hypergraph H1

from Fig. 7.1
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1 Max_Dist_Tree_from_SBT_Output(pv, D, r) → dict

2 Keep v ∈ V with D(v) ̸=∞ in list L;
3 Create tree Tr with r as root;

4
5 for v ∈ L
6 e← pv(v);
7 Let max dist be the largest weight in e.
8 Pick rightmost node u such that

w(u) == max dist;
9 Add (u, v) to Tr;

10 return Tr;

Figure 7.3: Converting sub-hypergraph into maximal dis-
tance tree

v1

v2 v3 v5

v4.1 v4.2 v6.1

v4

v6.2v7

v6

v8 v9

T1

T4
T6

Figure 7.4: Decomposed trees for sub-hypergraph H1 of
Fig. 7.1

in definition (4.9), can be interpreted as the computational
bottleneck chain for the shortest B-path (i.e. the least effi-
cient simple path on the most efficient B-path). Optimizing
the cost of any edge on this path can decrease the overall
distance between the two vertices.

Preprocessing Step Our distance path encryption
step requires some additional preprocessing compared to
PathGES that takes the sub-hypergraph Hr for each root
r ∈ V of the SBT output and turns it into a tree Tr, which
we call the Maximal Distance Tree. In Tr, the path from
the root to any other node in the tree is the distance path
from the root to that node. The pseudocode can be found
in Fig. 7.3. Moreover, Fig. 7.2 gives an example of how a
sub-hypergraph is converted to a maximal distance tree.

The idea of the algorithm is simple: for each node v in
Hr, find the tail node u with the highest weight and add the
edge (u, v) to Tr.

Encryption and Reconstruction The encryption of the
distance paths is the same as in PathGES, with the one
notable difference being that using every vertex as a root,
we now encrypt its Maximal Distance Tree obtained from
the SBT output instead of the SDSP tree. The process in

Fig. 7.5 provides an overview of the encryption and query
procedures. The reveal function also agrees with PathGES,
and the reconstruction step is the same.

7.2. B-Path Queries

In some applications, querying only the distance paths
might not be sufficient, and the user might be interested in
the whole shortest B-path between two vertices. For sim-
plicity, we limit our scheme to hypergraphs whose hyperarcs
E contain only one vertex in their head, i.e., |T (E)| = 1, and
outline later ideas on how this scheme can be generalized to
arbitrary hyperarcs, which is subject to future work. For ex-
ample, the hypergraph in Fig. 1.1 fulfills these requirements.

Preprocessing Step Our B-path encryption step re-
quires an additional preprocessing step compared to
PathGES that takes the sub-hypergraphs for each root r ∈
V of the SBT output and decomposes them into trees. The
pseudocode to generate this tree can be found in Fig. 7.6.

To extract trees from a sub-hypergraph Hr, we iterate
through all vertices. If a vertex v is the head of a hyperarc
with multiple tail vertices, the Hr contains a loop that needs
to be opened. This is achieved as follows: First, the vertices
in the tail of v: T (v) are connected with newly introduced
pseudo-vertices vi. Second, a new tree Tv with v is created.
All vertices in Hr that are reachable from v via a sequence
of outgoing hyperarcs are connected to this new tree Tv.

Example 7.1 Fig. 7.4 demonstrates the processing for
the example sub-hypergraph in Fig. 7.1. Pseudo-vertices
and roots of trees are visualized in blue and yellow, respec-
tively. First, the vertices v2, v3 and v5 are processed and
connected via directed simple edges with v1 in tree T1.

Next vertex v4 is processed whose incoming hyper-
arc contains multiple vertices (v2, v3) in its tail. Hence,
v2 and v3 are connected with newly introduced pseudo-
vertices v4,1 and v4,2 in T1 enforcing tree structure. In
addition, a new tree T4 is created with v4 as root. The
following processing of v6, whose incoming hyperarc also
has multiple tail vertices works similarly: v5 and v4 are
connected to pseudo-vertices v6,1 and v6,2 of v6, and a
new tree T6 is generated. Finally, the vertices v7, v8, v9
are added.

The dictionary dict determines the tree to which each
vertex is assigned. For example, v7 is added to T4 because
it is connected via an incoming edge to v4, which is already
part of tree T4 = dict(v4).

Encryption The encryption of the hypergraph is de-
scribed in the pseudocode in Fig. 7.7. As in PathGES, every
vertex r ∈ V is considered as root vertex and the SBT algo-
rithm is carried out. Our new preprocessing step in Fig. 7.6
transforms the SBT output into a list of trees of vertices
and pseudo-vertices. Similar to PathGES, the HLD algo-

9



Figure 7.5: Private distance path query between nodes v1 and v6 in Fig. 7.1

1 Decompose_SBT_Output(pv, D, r) → LT

2 Sort v ∈ V with D(v) ̸=∞ in list LV in

increasing order of cost D(v);
3 Create tree Tr with r as root;

4 // Stores for each processed vertex v ∈ V to

which tree dict(v) it belongs.

5 Init tree dictionary dict;

6 // List containing the tree decomposition.

7 Init tree list LT;

8 dict(r)← Tr;

9
10 for x ∈ LV

11 e← pv(x);
12 if |T (e)| = 1
13 Select single element u ∈ T (e);
14 Add (u, x) to tree dict(u);
15 dict(x)← dict(u);
16 else

17 // e’s tail contains multiple vertices,

preventing tree structure

18 // → Create tree structure via pseudo

vertices xi and start new tree Tx for x.
19 Create tree Tx with x as root;

20 Add Tx to LT;

21 for i-th tail u ∈ T (e)
22 // Introduce pseudo vertex xi for vertex x.
23 Add (u, xi) to tree dict(u);
24 dict(x) = Tx;

25 return LT;

Figure 7.6: Decomposition sub-hypergraph into trees: the
algorithm takes the output of the SBT algorithm (see
Fig. 5.1): predecessor function Pv and vertex cost func-
tion D and the root vertex r as input and outputs a list of
edge-disjoint trees that decompose the SBT output.

1 Encrypt(K, H)

2 Init multimaps M1 and M2;

3 Parse (K1,K2)← K;

4 for r ∈ V
5 Compute SBT output pv,D rooted in r in H;

6 LT ← Decompose_SBT_Output(pw, D, r);

7 // Iterate through trees in the decomposition LT

8 for Tx ∈ LT

9 TD
x ← ComputeHLD(T, x);

10 for each subpath pu,v ∈ TD
x in BFS manner

11 Let ℓ be the next power of 2 > |pu,v|;
12 Pad pu,v to length ℓ;
13 for j ∈ [0, ⌈log2(ℓ)⌉]
14 Let p

(j)
u,v comprise the last 2j edges of pu,v;

15 M2[(r, x, u, v, j)]← p
(j)
u,v;

16 s← p
(0)
u,v if j = 0 else p

(j)
u,v \ p(j−1)

u,v ;

17 for non-pad vertex w in s
18 // PathHES Extension

19 tk← EMM-RH.Token(K2, (r, x, u, v, j));
20 M1[(w, r)]← [tk];
21 if v ̸= x
22 M1[(w, r)]←M1[(w, r)] ∪M1[(v, r)];
23 else if r ̸= x
24 // The start v of the current subpath

pu,v is the root of the current

tree Tx.

25 // → Combine the fragment lists for

all pseudo-vertices xi of x:
26 for i = 1, . . . , |T (pv(x))|
27 M1[(w, r)]←M1[(w, r)] ∪M1[(xi, r)];
28 Permute M1[(w, r)];
29 Pad M1 and M2 to n2 log(n) and 4n2, respectively;

30 EM1 ← EMM-RR.Encrypt(K1,M1);
31 EM2 ← EMM-RH.Encrypt(K2,M2);
32 return (EM1, EM2);

Figure 7.7: Hypergraph encryption: the algorithm first de-
composes a hypergraph H into edge-disjoint trees and frag-
ments them into paths. These fragments are then stored
and encrypted into two multimaps, EM1 and EM2, using
the encryption keys (K1,K2) = K and output.
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rithm decomposes the trees into edge-disjoint paths, which
are then further fragmented.

To understand how our encryption algorithm incorpo-
rates the fact that the SBT sub-hypergraph is decomposed
into multiple trees, we first need to recap how PathGES
generates the multimap M1, which contains for each query
(v, r), the fragment tokens that form the query’s response.
This multimap is constructed recursively: the token list of
the query (w, r), where w is part of the subpath pu,v of the
HLD output, is generated by copying the token list of query
(v, r) plus the fragment that connects v with w.

Our algorithm builds on this idea by constructing M1

through a two-level iteration: it iterates through all trees
Tx and within each tree through subpaths pu,v.

Unlike PathGES, it checks, for each subpath pu,v,
whether its start v is equal to the root of the current tree
x. If this is the case, we do not copy the token list of the
query (v = x, r) but copy and merge the token lists of the
queries to the pseudonodes of x: {(xi, r)}i. This ensures
that a query (w, r) from r to a vertex w after x contains all
paths that of the sub-hypergraph Hr that lead from r to x.

Example 7.2 To illustrate this, consider the encryption
of the tree composition in Fig. 7.4, where the algorithm
processes subpath Pv6,v9 = (v6, v9) in tree T6. Tree T1

and T4 are already fully processed and encrypted. Since
the start of the subpath is the root of the current tree,
multimap M1 contains the following fragment tokens for
a query from v1 to v9:

M1((v9, v1)) = M1((v6,1, v1)) ∪M1((v6,2, v1)) ∪ {tk},

where tk is an encrypted toke for fragment (v6, v9). This
ensures that M1((v9, v1)) contains all fragments that lead
from v1 to v6 enabling the reconstruction of the whole B-
path after querying.

Search Token and Search The computation of the
search token and the lookup of the shortest B-path on the
server side are equivalent to the PathGES functions.

Reconstruct Our reveal function agrees with PathGES
except for the reconstruction step, in which a list of en-
crypted fragments is decrypted and stored in a set P .

Note that the fragments are not sorted because of the
shuffling in the encryption function. PathGES reconstructs
the path by sorting the fragments in the correct order. This
can be interpreted as a game of Dominoes: to reconstruct
the path for a query from vertex v to u, the algorithm first
selects the fragment whose start is equal to v. In the next
step, it searches for a fragment whose start equals the end
of the previous fragment, and so on.

In contrast, the hypergraph reconstruction algorithm
must take into account that the fragments do not neces-
sarily form a chain: this can be seen in the example in

1 Reconstruct(P, v) → H
2 Initialize empty hypergraph H;

3 Add vertex v to H;

4 C ← {v};
5 while P ̸= ∅
6 Take next c from C;
7 if c is pseudo-vertex. I.e., c = ”ai” for a ∈ V
8 if a ∈ H
9 // H already contains a: merge ai and a

10 eai = (v, ai)← unique incoming edge of ai;

11 ea ← unique incoming hyperarc of a.
12 T (ea)← T (ea) ∪ {v};
13 Remove ai from H;

14 continue;

15 else

16 Replace ai with vertex label a in H;

17 c← a;
18 // Connect all fragments starting with c with c:
19 Find fragments (ps, pe) ∈M ⊂ P s.t. ps = c;
20 for (ps, pe) ∈M
21 Add directed edge (c, ps) to H;

22 C ← C ∪ {pe};
23 Remove fragments in M from P;

24
25 return H;

Figure 7.8: Hypergraph Reconstruct B-Path Response: the
algorithm takes an unordered list of path fragments P (e.g.,
left part in Fig. 7.9 and combines them to a B-path starting
in vertex v.

Fig. 7.9, which visualizes the fragments for the query v1
to v6. Fig. 7.8 shows the pseudocode of the reconstruction
algorithm: generalizing the PathGES approach, the recon-
struction algorithm has a list of vertices C that must be
connected using the available fragments. For each vertex
v in C, the algorithm finds the fragments that start with
vertex v and connects v with the fragments.

In addition, it detects all pseudo-vertices {ai}i of a ver-
tex a and merges the incoming directed edge of all pseudo-
vertices: {(vai

, ai)}i into one hyperarc e with head and tail

H(e) = a,

T (e) = ∪i{vai
}.

Example 7.3 Fig. 7.9 demonstrates the reconstruction
of the example response in Fig. 7.10. The algorithm starts
with the open vertex C = {v1}, finds all connected frag-
ments and connects them to v1 and adds their end to C:
C = {v4,1, v4,2, v6,1}. The pseudo-vertices v4,1 is replaced
by the actual vertex v4 merged with v4,2 resulting in an
incoming hyperarc from v2 and v3. The reconstruction of
the incoming hyperarc of v6 works in a similar way until
the whole B-path from v1 to v6 is recovered.
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v1
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v4.1 v4.2 v6.1
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v4 v6.1
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Figure 7.9: Example: Reconstruction B-Path: Visualizes the reconstruction of a B-path from an unordered set of decrypted
path fragments.
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Figure 7.10: Private shortest B-path query: visualizes the steps that user and server carry out to query the shortest
B-path from vertex v1 to v6.

Scheme The process of privately querying shortest B-
paths is visualized in Fig. 7.10:

• The user generates a search token from a query speci-
fying a start and end vertex.

• This search token is sent to the server, which retrieves
the corresponding fragment token list in multimap M1.

• For each fragment token, the server looks up the en-
crypted path fragments in M2, which are sent back to
the user.

• The user uses K2 to decrypt each fragment.
• The user uses the algorithm in Fig. 7.8 to reconstruct
the B-path.

8 Implementation

We implemented our hypergraph encryption scheme,
PathDHES, on top of the original PathGES implementa-
tion [FGPT24a]. Our implementation is publicly available
on GitHub [FMRS25]. Besides extending the functional-
ity to PathGES, our implementation of PathDHES is back-
wards compatible, as one can also query paths within regular
graphs using the new scheme. As such, PathDHES can be
seen as a generalization, or extension, of the original scheme.

To evaluate our implementation, we include two exam-
ple datasets: the example hypergraph in Fig. 7.1 and the
hypergraph that we extracted from Blender’s Shader Node

editor (see Fig. 1.1). We use the Blender hypergraph as a
proxy for a realistic hypergraph dataset of connected com-
putational units because we did not have such a dataset.
In both datasets, the weights of all hyperarcs, which repre-
sent the processing time of the corresponding computational
node, is set to 1. In practical scenarios, actual processing
times can be imported into our scheme.
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