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Abstract

For our 6.5610 (Applied Cryptography) final project, we present an backdoorable
DRBG based on Dual EC DRBG that, unlike Dual EC DRBG, is a true DRBG under
suitable assumptions. Our algorithm, which we call the Twisted Dual EC DRBG,
involves iteratively multiplying points on an elliptic curve or its quadratic twist.

1 Introduction

The Dual EC DRBG, short for Dual Elliptic Curve Deterministic Random Bit Generator, is
an algorithm for random bit generation developed by the National Security Agency (NSA)
and standardized by the National Institute of Standards and Technology (NIST) in 2006.
Dual EC DRBG is famous for being potentially backdoored by the NSA, and it was formally
withdrawn by NIST in 2014.

1.1 Importance

Random numbers are critical for the secure operation of many cryptographic protocols, with
applications from key generation to cryptographic salt or padding. It is important that these
random numbers are unguessable, or else the security of any scheme using them would be
compromised.

To generate random numbers, software developers rely on algorithms known as determin-
istic random bit generators (DRBGs). DRBGs take some small amount of “seed” randomness
as input and amplify it into a long string of random bits; in typical applications, the random
seed is derived from some physical process capable of producing entropy.

Sometimes software developers design their own DRBGs, but more often than not, they
rely on existing standards for pseudorandom bit generation. This is because it is difficult
to design a DRBG without introducing bias or patterns in the output bits, and existing
standards have already been subject to years of public scrutiny. Existing standards are
usually issued by standards organizations such as the National Institute of Standards and
Technology (NIST) and the International Organization for Standardization (ISO).
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1.2 History

Dual EC DRBG was developed by the NSA in the early 2000s and first publicly presented
in 2004 at a NIST workshop on random number generation [6]. It was noted that Dual EC
DRBG was a slow DRBG, but the presentation claimed “increased assurance”. In 2005, NIST
published a draft of the complete Dual EC DRBG algorithm, asking for public comments.

Three months later, Kristin Gjøsteen pointed out that Dual EC DRBG had biases in
the output bits [5]. Berry Schoenmakers and Andrey Sidorenko improved the distinguisher
a few months later, showing that Dual EC DRBG bits could be distinguished from truly
random bits with advantage 4.9%, using 2.5 hours of computation on a personal computer
[3]. They state that the attack could be patched by masking more output bits, but NIST
never adopted this recommendation. In hindsight, this decision was understandable because
this modification would have closed the back door. In June 2006, NIST formally adopted
Dual EC DRBG despite biases in its output.

The Dual EC DRBG was also adopted as a standard by the ISO [1]. The story behind the
inclusion of Dual EC DRBG in this multi-year process of standardization is also interesting.
A 2003 draft of the standards, which did not include Dual EC DRBG, was approved by 19
out of 24 voting countries. However, the United States did not approve the standard; instead,
it sent an objection stating that the standards “lacked sufficient depth”. Instead, the United
States proposed its own set of standards that included Dual EC DRBG, stating that their
standards were “much further developed” [7]. The ISO ultimately ended up adopting the
standards in the United States’ proposal in late 2005.

In August of 2007, Dan Shumow and Niels Ferguson announced the possibility of a back
door in Dual EC DRBG at an annual cryptography conference [13]. They showed that
the elliptic curve points P and Q used in the Dual EC DRBG algorithm could have been
generated in a way that enables the generating party to predict all future bits given a single
240-bit block of the DRBG. Shortly after, Wired published an article [11] calling Dual EC
DRBG “an algorithm that is slow, badly designed and just might contain a backdoor for the
National Security Agency”. In response, NIST sent Wired a letter stating that there is “no
evidence that anyone has... the ‘secret numbers’ for the back door” [2].

That was the end of the discussion until 2013, when Edward Snowden leaked sensitive
government documents to journalists. According to the New York Times, “Classified N.S.A.
memos appear to confirm that the fatal weakness, discovered by two Microsoft cryptog-
raphers in 2007, was engineered by the agency,” referring to the backdoor discovered by
Shumow and Ferguson [10]. Furthermore, it was revealed that the NSA secretly paid $10
million to RSA Security to use Dual EC DRBG as its default random number generator [8].

In 2014, NIST finally withdrew Dual EC DRBG from its list of standard random number
generators, recommending that users switch to one of the three other standards [9]. At this
point, the damage had been done; the inclusion of Dual EC DRBG in NIST’s standards
undermined trust in the government among the cryptographic community.

The story behind Dual EC DRBG is truly fascinating. For more details, there is a
comprehensive timeline given in [4].
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1.3 Our Work

Recall that Gjøssten, Schoenmakers, and Sidorenko showed that Dual EC DRBG was not a
true DRBG because it was possible to distinguish Dual EC DRBG bits from truly random
bits with high probability. Our 6.5610 project is to modify the Dual EC DRBG algorithm
to remove the distinguisher while retaining the backdoor.

There are several naive modifications that do not work.

• Following the suggestion of [12], one could modify Dual EC DRBG to output fewer
bits. However, this closes the back door.

• One could modify Dual EC DRBG to use a different elliptic curve and/or different
points P and Q. However, the distinguishing attack still exists because it does not
depend on the curve used, nor the points P or Q.

Instead, we propose an algorithm based on Dual EC DRBG that additionally involves a pair
of elliptic curves related by a quadratic twist. We call our algorithm the Twisted Dual EC
DRBG. The Twisted Dual EC DRBG has the property that the points in the algorithm could
be chosen so that the generating party can predict all future bits given a single output block
of the DRBG. However, the distinguishing attack of Gjøssten, Schoenmakers, and Sidorenko
no longer applies because the nonuniformity of output bits is smoothed out by using both
the elliptic curve and its twist.

1.4 Outline

Useful definitions are given in Section 2.1. Section 2.2 contains the complete description
of the Dual EC DRBG algorithm, as described in [3]. Section 2.3 contains a description
of the possible backdoor, as described in [13]. Section 2.4 contains the algorithm for the
distinguisher, as described in [12]. Additionally, we prove that the distinguisher works under
suitable assumptions, which Schoenmakers and Sidorenko do not provide, since their work
only verifies the distinguisher empirically.

Our Twisted Dual EC DRBG algorithm is given in Section 3.1. As promised, the DRBG
is still backdoorable; this process is described in Section 3.2. However, unlike the Dual EC
DRBG, the Twisted Dual EC DRBG is secure in the sense that no probabilistic polynomial-
time algorithm can distinguish the Twisted Dual EC DRBG output from truly random
output. A proof of this fact is given in Section 3.3 with suitable assumptions. A runtime
analysis of the Twisted Dual EC DRBG is given in Section 3.4. Finally, an implementation
of the Twisted Dual EC DRBG is given in Section 3.5.

Finally, possible future directions are discussed in Section 4, and the work distribution
is given in 5 as required by the final project instructions.
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2 Background

2.1 Definitions

A deterministic random number generator, or DRBG, is an algorithm that outputs a bit
sequence given an input seed. It must satisfy two properties:

• the DRBG must be deterministic; that is, it produces the same output given the same
seed.

• the DRBG must be secure; that is, indistinguishable from true randomness without
knowledge of the seed.

Formally, a DRBG is parameterized by a security parameter λ ∈ N. It consists of the
following algorithms:

• A probabilistic polynomial-time algorithm Gen(1λ)→ param.

• A polynomial-time algorithm DRBG(param, seed)→ {0, 1}poly(λ) which takes as input
a λ-bit seed and outputs a poly(λ)-bit string.

For security, it must have the property that for every probabilistic polynomial-time distin-
guisher D(param, ·) taking values in {0, 1},

|Pr [D(param,DRBG(param, seed)) = 1]− Pr [D(param, R) = 1]| < negl(λ)

where R is a random poly(λ)-bit string, and the probability is taken over param, R, and D’s
internal randomness.

A DRBG is backdoored if there exists some probabilistic polynomial-time algorithm
KeyGen(1λ) → (param, key) extending Gen(1λ) and a probabilistic polynomial-time dis-
tinguisher D(param, key) with output in [0, 1] such that

Pr [D(param, key)(DRBG(param, seed)) = 1]− Pr [D(param, key)(R) = 1] > 1− negl(λ)

where R is a random poly(λ)-bit string, and the probability is taken over param, R, and D.
For a field F with char(F) /∈ {2, 3}, an elliptic curve over F is the zero set (x : y : z) of

the homogeneous polynomial
y2z = cx3 + axz2 + bz3

in the projective plane, where a, b, c ∈ F are constants satisfying −16c2(4a3+27b2c) ̸= 0. All
points on an elliptic curve can be written in the form (x : y : 1) via division by z, except for
the point (0 : 1 : 0), called the point at infinity. Thus, elliptic curve points will be denoted
by the coordinate pair (x, y) with the assumption that the z-coordinate is 1.

The set of points on an elliptic curve form an abelian group. The group operation is
implied by the following two constraints.

• The point at infinity is the identity.
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• The three points of intersection of any line with the elliptic curve sum to the identity.

Inverses can be computed using lines passing through the point at infinity, and the sum of
any two points A and B is given by the inverse of the third point of intersection of line AB
and the curve. (If A = B = P , then line AB is the line through P tangent to the elliptic
curve. If F is a finite field, then the tangency condition is given by a constraint of the formal
derivative of the elliptic curve and the slope of the line through P .)

The identity axiom, inverse axiom, and commutativity follow directly. Associativity can
be proved via a long and involved algebraic manipulation. Points on elliptic curves can be
multiplied by integers, where

nP = P + · · ·+ P︸ ︷︷ ︸
n P ’s

for positive integers n, nP = (−n)(−P ) for negative n, and 0P is the point at infinity.
Given an elliptic curve y2 = cx3 + ax + b over a field F, its quadratic twist by d is the

elliptic curve
dy2 = x3 + ax+ b

where d ∈ Fp is not a square. Mathematically, all quadratic twists are isomorphic to each
other, so it does not matter which quadratic nonresidue d ∈ Fp is chosen to construct a twist.

2.2 The Dual EC DRBG algorithm

This section will restate the complete Dual EC DRBG algorithm as given in [3] for the
security parameter λ = 256. The Dual EC DRBG takes its name from the fact that the
algorithm uses two elliptic curve points.

Consider the elliptic curve P-256, which is defined by the equation x3 − 3x + b over Fp

with parameters given in hexadecimal by

p = 2256 − 2224 + 2192 + 296 − 1

= 0xffffffff00000001000000000000000000000000ffffffffffffffffffffffff

b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b

Let P and Q be the points on the curve given by coordinates

Px = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296

Py = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5

Qx = 0xc97445f45cdef9f0d3e05e1e585fc297235b82b5be8ff3efca67c59852018192

Qy = 0xb28ef557ba31dfcbdd21ac46e2a91e3c304f44cb87058ada2cb815151e610046.

One can verify that these points both lie on the elliptic curve, and that the order of the
elliptic curve is the prime number

0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551.
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Let x(A) denote the x-coordinate of the point A.
The Dual EC DRBG takes a seed s0 ∈ Fp and a positive integer k as input, and it

outputs 240k pseudorandom bits. It is given by the following algorithm, which keeps track
of an internal state s ∈ Fp. Initially, the internal state s is set to the seed s0. Then, the
following steps are repeated k times:

• Replace s with x(sP ).

• Output the last 240 bits of x(sQ).

Note that when computing sP and sQ, s must first be converted from an element of Fp to
an element of Z. This is done via the most natural mapping Fp → {0, 1, . . . , p− 1}.

2.3 The Dual EC DRBG backdoor

This section will restate the Dual EC DRBG backdoor attack as given in [13].
Suppose an adversary knows the discrete logarithm of P with respect to Q; that is, some

k ∈ Z such that P = kQ. Such a number must exist because the order of the elliptic curve
group is prime. If the adversary also knew the coordinates of sQ, then they could recover
the secret state s because the next secret state is

sP = s(kQ) = k(sQ).

Now, observe that the Dual EC DRBG reveals the last 240 bits of x(sQ) during each iteration,
so an attacker knows all but 16 bits of the x-coordinate of sQ. Thus given a single 240-bit
block of Dual EC DRBG output, the adversary can brute force the coordinates of kQ, giving
at most 216 = 65536 possible values for the secret state s. From here, only a few more bits
of Dual EC DRBG output are needed to determine which of the 216 possible values of s is
the correct secret state. Once s is known, all future output can be predicted with 100%
accuracy.

2.4 The Dual EC DRBG distinguisher

This section will restate the Dual EC DRBG distinguisher as given by Schoenmakers and
Sidorenko in [12]. This algorithm allows an attacker without knowledge of the backdoor to
distinguish Dual EC DRBG bits from random bits. Schoenmakers and Sidorenko were able
to empirically distinguish them with 54.9% accuracy using 2.5 hours of computation on a
3GHz Linux machine with one gigabyte of memory. For better accuracy, this process can be
repeated multiple times.

To give the distinguishing attack, first define ϕ : {0, 1}240 → Z+ to be the number of
points ϕ(d) on the P-256 elliptic curve whose x-coordinate has d as its last 240 binary digits.
The attack is to sample the distribution of ϕ(b) for many 240-bit blocks b, where ϕ(b) is the
number of points on the elliptic curve whose x-coordinate has d as its last 240 digits.
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The distribution of ϕ(b) across truly random 240-bit blocks b has mean µ ≈ 216 and
standard deviation σ ≈ 256. However, the distribution of ϕ(b) across Dual EC DRBG 240-
bit blocks b has mean µ ≈ 216 + 1 and standard deviation σ ≈ 256.1 Thus, if the mean of
ϕ(b) could be sampled to ±1

2
accuracy, then Dual EC DRBG bits can be distinguished from

random bits. For a 95% confidence interval, this would require n samples, where

1.96σ√
n

=
1

2
=⇒ n ≈ 106.

Schoenmakers and Sidorenko only empirically verified the discrepancy in the means of
the distributions of ϕ(b). In what follows, we provide a proof of their claim assuming mild
assumptions on the map E → {0, 1}240 given by taking the last 240 bits of the x-coordinate.
Heuristically, one should expect their means to differ by approximately 1. This is because in
the Dual EC DRBG algorithm, the point sQ is already given as a point whose last 240 bits
is the output block, increasing the expected number of points having those bits as their last
240 bits of their x-coordinate by 1. This heuristic is proved rigorously via the claim below.

Claim 2.1. Suppose that ϕ : E → {0, 1}240 is modeled as a random map E → {0, 1}240.
Then with high probability,2

(a) The distribution of ϕ(b) across truly random 240-bit blocks b has mean 216 +O(2−16).

(b) The distribution of ϕ(b) across Dual EC DRBG 240-bit blocks b has mean 216 + 1 +
O(2−16).

Proof. For each nonnegative integer n, let r(n) denote the probability that exactly n elliptic
curve points have an x-coordinate ending in a randomly chosen 240-bit string. Then r gives
the distribution of ϕ over random 240-bit blocks, and

s(n) =
nr(n)∑
i∈N ir(i)

gives the distribution of ϕ over 240-bit output blocks. The mean of r is

µ =
∑
i∈N

ir(i) =
1

2240

∑
i∈N

i · 2240r(i) = #E
2240

=
2256 −O(2224)

2240
= 216 +O(2−16).

The mean of s minus the mean of r is∑
i∈N

is(i)−
∑
i∈N

ir(i) =

∑
i∈N i

2r(i)− (
∑

i∈N ir(i))
2∑

i∈N ir(i)
=

σ2

µ

1Schoenmakers and Sidorenko claim that the standard deviation is ≈ 255.6. However, we believe they
did not take enough samples to determine the standard deviation to within four significant figures. We will
value of 256 later under mild assumptions.

2The probability here is probably something like 1− 2O(−240), but the precise details are tedious to work
out and will be omitted because they are unenlightening and better left to the theoretical statisticians.
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where µ is the mean of r and σ is the standard deviation of r.
Now, assume that ϕ : E → {0, 1}240 is a random map. Then with high probability, r will

have a distribution given by the sum of |E| Bernoulli random variables with mean 1/2240, up
to some small error. For this distribution,

σ2 = |E|
(

1

2240

)(
1− 1

2240

)
,

so the mean of s is

µ+
σ2

µ
= µ+ |E|

(
1

2240

)(
1− 1

2240

)
2240

#E
= µ+ 1− 1

2240
= 216 + 1 +O(2−16).

In fact, the same assumption can be used to prove that the standard deviation of the
distribution of ϕ(b) across both truly random 240-bit blocks b and Dual EC DRBG 240-bit
blocks b is 256.

Claim 2.2. Suppose that ϕ : E → {0, 1}240 is modeled as a random map E → {0, 1}240.
Then with high probability,

(a) The distribution of ϕ(b) across truly random 240-bit blocks b has variance 216+O(2−16).

(b) The distribution of ϕ(b) across Dual EC DRBG 240-bit blocks b has variance 216 +
O(2−16).

Proof. The variance of r is (∑
i∈N

i2r(i)

)
−

(∑
i∈N

ir(i)

)2

.

The variance of s is(∑
i∈N

i2s(i)

)
−

(∑
i∈N

is(i)

)2

=
(
∑

i∈N ir(i))(
∑

i∈N i
3r(i))− (

∑
i∈N i

2r(i))2

(
∑

i∈N ir(i))
2

.

By assumption, r is a binomial distribution with n = |E| and probability p = 1
2240

, so r’s
variance is

np(1− p) ≈ |E|
2240
≈ 216 +O(2−16).

To calculate the variance of s, first recall the moments

u1 = np

u2 = n(n− 1)p2 + np

u3 = n(n− 1)(n− 2)p3 + 3n(n− 1)p2 + np.
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Thus, s’s variance is

np(n(n− 1)(n− 2)p3 + 3n(n− 1)p2 + np)− (n(n− 1)p2 + np)2

(np)2

= (n− 1)(n− 2)p2 + 3(n− 1)p+ 1− ((n− 1)p+ 1)2 = (n− 1)p(1− p)

≈ |E|
2240
≈ 216 +O(2−16).

3 Twisted Dual EC DRBG

3.1 The Twisted Dual EC DRBG algorithm

This section will define the complete Twisted Dual EC DRBG algorithm for the security
parameter λ = 384. For other security parameters λ, one should choose suitable curves over
finite fields of size ≈ 2λ along with points on those curves.

Let E be the P-384 elliptic curve, which is defined by the equation y2 = x3− 3x+B over
Fp with parameters given in hexadecimal by

p = 2384 − 2128 − 296 + 232 − 1

= 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff

B = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef.

The number of points on E is

ffffffffffffffffffffffffffffffffffffffffffffffffc7634d81f4372ddf581a0db248b0a77aecec196accc52973,

which is prime. Additionally, let E ′ denote the curve

y2 = −x3 + 3x−B = (−x)3 − 3(−x)−B.

This is a quadratic twist of E because p ≡ 3 (mod 4) implies −1 is a quadratic nonresidue
modulo p. The number of points on E ′ is

#E ′ = 2p+ 2−#E
= 0x1000000000000000000000000000000000000000000000000389cb27e0bc8d21ea7e5f24bb74f58851313e697333ad68d

which is also prime.
Now, let P and Q be the points on E given by coordinates

Px = 0x43a8df013becd277e4025216bc90897fde4ca279023e0a4e44e56e8901a6c99760b571f069a57870fbe2056786383c5f

Py = 0xb3b25f84b93f6e08fff60c6c2a54a265d6011fc2dc1e4b77f3225615f083371e8336b0cf482a8359ccf23701bd2ee36c

Qx = 0x1c36145bead2c4d731d8c42e5f2f99ff6863828635fa58039baeaad0b7cb1f2f1a327c68e4a9e365a02787f213f69873

Qy = 0xb823b33bfcf9984ec3238e0651299a0c40739bdf10fee3ed97573747a85fa0d1d46d9a40a23bf25bed06afc63f2daaa9,
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and let P ′ and Q′ be the points on E ′ given by coordinates

P ′
x = 0x37bd2d02280518a1a17231c472c31167df26db67a66067274f1bc82b0cdaa5d7f80150bb0e8d8d26fd9dd95143e180c1

P ′
y = 0x5ddc86454aab639bf39efa0efd3fe6a4568bbe2708844b370e1083b8047868c6c9d75fefcae4a2eb8009319d37745a14

Q′
x = 0x4a1d7984226f32ae743c629d1a738192d190d7807bc11e25ea3c83fd5c41b228b256d475e8c1a945b7c93d6c834973aa

Q′
y = 0x9d4c10281697f6ceb4d48166d6fe88ca04e2e57f39b7dec79314163e421e004c10ba1f21d9930c2060d0acbdf6ad6016.

The Twisted Dual EC DRBG takes a seed s0 ∈ Fp and a positive integer k as input,
and it outputs 384k pseudorandom bits. It is given by the following algorithm, which keeps
track of an internal state s ∈ Fp. Initially, the internal state s is set to the seed s0. Then,
the following steps are repeated k times:

• Let a be the last bit of s and let b be the second-to-last bit of s.

• If b = 0, output all 384 bits of the x-coordinate of sQ. If b = 1, output all 384 bits of
the x-coordinate of sQ′.

• If a = 0, replace s with the x-coordinate of sP . If a = 1, replace s with the x-coordinate
of sP ′.

Note that the output step and the state update step have been swapped from the original
algorithm.

Intuitively, this modified algorithm avoids the bias that Schoenmakers and Sidorenko’s
distinguisher takes advantage of because every number in Fp is the x-coordinate of some
point in E or some point in E ′ (and no number is an x-coordinate of points in both curves).

3.2 The Twisted Dual EC DRBG Backdoor

The Twisted Dual EC DRBG Backdoor is very similar to the backdoor given in Section 2.3.
If an adversary knows an integer k for which P = kQ, or an integer k′ for which P = kQ′,
then the adversary can recover the secret state from any 384-bit block of Twisted Dual EC
DRBG output. This allows them to predict all future output with 100% accuracy. In fact,
the backdoor algorithm is faster than the one given in Section 2.3 because all bits of the
x-coordinate of sQ or sQ′ are revealed in the Twisted Dual EC DRBG algorithm.

To see why, suppose the adversary knows an integer k for which P = kQ. Let the old
secret state be s. If last two bits of s, then the algorithm outputs the x-coordinate of sQ and
updates the secret state to the x-coordinate of sP . In this case, an adversary can compute
the x-coordinate of

sP = skQ = k(sQ)

as the next secret state. On average, the last two bits of the secret state are both zero 1
4
of

the time, so an adversary knowing k can expect to read four 384-bit blocks before recovering
the secret state.

If the adversary also knows an integer k′ for which P ′ = k′Q′, then the adversary can
also recover the next secret state if the current secret state’s last two bits are both one. In

10



this case, an adversary knowing both k and k′ can expect to read two 384-bit blocks before
recovering the secret state.

3.3 Security Proof

3.3.1 Setup and Hardness Assumptions

We first enumerate the assumptions necessary to prove the security of our PRG.
We assume that p is in [2λ − 2λ/2, 2λ], so that |2λ − p| ≤ √p. Let q = #E and q′ = #E ′.

Assume that q and q′ are distinct primes.Let E denote the elliptic curve defined by the same
equation as E but over F2

p instead of Fp. Because E has subgroups isomorphic to E and E ′,
and because q and q′ are distinct primes, it follows that E ≃ E × E ′ ≃ Z/qq′Z. Note that
the projection of E onto E can be computed efficiently; it simply requires multiplication by
q′(q′−1 (mod q)). Similarly, the projection of E onto E ′ is efficiently computable.

We define the following problems:

• The Decisional Diffie-Hellman Problem (DDHP) on E with base point P is the problem
of distinguishing (aP, bP, cP ) and (aP, bP, abP ) for uniformly random a, b, and c in
[0, q). This problem is similarly defined for E ′ with basepoint P ′.

• The Decisional k-bounded Discrete Logarithm Problem (k-DBDLP) on E with base
point R is the problem of distinguishing aR, where a is uniform from [0, k), and bR,
where b is uniform from [0, qq′).

Concretely, the DDHP is believed to take time at least Θ(
√
q) to solve. The authors

were unable to find any references for the latter problem, but believe that the naive Θ(
√
k)

algorithm of running the baby-steps giant-steps algorithm with an upper bound of k is the
most efficient way to solve it.

3.3.2 Single-output security

We first prove that a single round of our DRBG is a secure pseudorandom generator.

Lemma 3.1. Assume that Gen(1λ) chooses appropriate E, E ′, P , and P ′, and also chooses
Q and Q′ uniformly at random on E and E ′.

Sample param← Gen(1λ) and s0 ← {0, 1}λ. Let r1 be the first block of λ bits of random-
ness output by the Twisted Dual EC DRBG using parameters param and seed s0, and let s1
be the new internal state. Then

(param, s1, r1) ≈c (param, $, $).

Proof. Step 1: Replacing bitstrings with random Fp elements.
First, because |2λ − p| ≤ √p, a random element of {0, 1}λ and a random element of Fp

are statistically indistinguishable, with a statistical distance of O(1/
√
p). Therefore, we can
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replace s0 with s′0, a random element of Fp, and if r′1 and s′1 are the new values of r1 and s1,
and y and y′ are uniform elements of Fp, it suffices to show that

(param, s′1, r
′
1) ≈c (param, y, y′)

Step 2: Proving indistinguishability from random elliptic curve points, for
fixed a and b.

From now on we fix E , E ′, P , and P ′, and prove that

(Q,Q′, s′1, r
′
1) ≈c (Q,Q′, y, y′).

Let a be the last bit of s′0 and let b be the second-to-last bit of s′0. Let t0 be the remaining
bits of s′0, so s′0 = a+ 2b+ 4t0.

Recall that s′1 and r′1 are both x-coordinates of points on either E or E ′. Further, a and
b determine which curve is used for s′1 and r′1 respectively. We claim that for a fixed choice
of a and b,

(Q,Q′, r′1, s
′
1) ≈c (Q,Q′, z, z′)

where z is the x-coordinate of a uniform point on the curve indicated by a and similarly
for z′. Let k be the integer in [0, q) such that Q = kP and let k′ be the integer in [0, q′) such
that Q′ = k′P ′.

First we consider the case where a = b. Say that a = b = 0; the other case is similar.
Then

(Q,Q′, r′1, s
′
1) = (kP, k′P ′, x(s′0kP ), x(s′0P ))

≈c (kP, k
′P ′, z, x(s0P ))

≈c (Q,Q′, z, z′)

where c is a random element of [0, q). The first equivalency follows from the assumed
hardness of the DDHP and the fact that k′ is independent of everything else in the distribu-
tion. (We are ignoring the fact that the lower two bits of s′0 are fixed, since a distinguisher
when two bits of s′0 are fixed still works a quarter as often in general.) The second equivalency
follows from assuming p/4-BDBLP on E with basepoint 4P .

We now consider the harder case where a ̸= b. Say that a = 0 and b = 1. We first
observe that it suffices to show (Q,Q′, s′0Q

′, s′0P ) ≈c (Q,Q′, j′P ′, jP ), where j′ ∈ [0, q′) and
j ∈ [0, q).

Recalling the efficiently computable isomorphism of E and E × E ′, let R = Q′ + P ∈ E,
which is a generator of E. Let Z ∈ E be uniformly random. We see that it suffices to show

(Q,Q′, s′0R) ≈c (Q,Q′, Z). But this follows from p-BDBLP on E.
Step 3: Providng indistinguishability of random elliptic curve points and

random Fp elements.
At this point we are essentially left with the following problem:
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Let r′1 be the x-coordinate of a random point on E with probability 1/2 and the x-
coordinate of a random point on E ′ with probability 1/2. Choose s′1 in the same way. Prove
that (r′1, s

′
1) is indistinguishable from two random elements of Fp.

It turns out that these distributions are actually statistically indistinguishable. By the
Weil bounds, q and q′ are in [p+1− 2

√
p, p+1+2

√
p], so r′1 and s′1 have statistical distance

O(1/
√
p) from a distribution where they are chosen uniformly from E ∪ E ′.

The equation for E is y2 = x3− 3x+B, and the equation for E is −y2 = x3− 3x+B. −1
is a quadratic nonresidue modulo p, so for any value of x, either there will be two solutions
in y for the first equation and 0 for the second, vice versa, or 0 will be the unique solution
for both. Therefore the uniform distribution of x-coordinates of points in E ∪ E ′ is actually
the same as the uniform distribution on Fp so we are done.

3.3.3 Multi-output security

We now prove security over many outputs.

Theorem 3.2. The Twisted Dual EC DRBG with randomized parameters is a secure DRBG.

Proof. If r1, r2, . . . , rm are the output blocks, we must show

(Q,Q′, r1, r2, . . . , rm) ≈c (Q,Q′, $, $, . . . , $)

This is a simple hybrid argument. For 0 ≤ i ≤ m let Hi be a hybrid where r1 through ri
are truly random and ri+1 through rm are generated with the DRBG from a random seed.
By Lemma 3.1, Hi and Hi+1 are indistinguishable, so we are done.

Remark 3.3. In fact, the proof still carries through if we add the secret state sm to the
distribution, which proves that this DRBG is forward secure. This is the reason for swapping
the order of the randomness output and state update steps as compared to the original.

Remark 3.4. Assuming optimal hardness for ECDLP and DBDLP, the scheme as described
offers essentially a λ/2-bit security level.

3.4 Runtime Analysis

In order to generate 384k bits, the Twisted Dual EC DRBG must perform 2k scalar mul-
tiplications on the elliptic curve: k multiplications s → x(sP ) to update the state and k
multiplications s→ x(sQ) to generate the output.

Using the Montgomery Ladder algorithm for elliptic curve multiplication, each scalar
multiplication can be performed using approximately 2 · 384 additions.

Therefore, the Twisted Dual EC DRBG can generate 1 bit for every 4 elliptic curve
additions on average.

13



3.5 Implementation

Our implementation of the Twisted Dual EC DRBG and its backdoor can be found at
https://github.com/aredheron/Twisted-Dual-EC-DRBG/.

Some notes about the implementation:

• The implementation uses the tinyec library, which means that the algorithm used for
scalar multiplication may be susceptible to side channel attacks.

• The x-coordinates of the parameters (points) on the twisted curve are negative those
specified in 3.1. This is because the tinyec library requires curves to be specified by
monic cubics, in this case y2 = x3 + ax− b instead of y2 = −x3 − ax− b.

4 Future Directions

There are several directions that this project could take in the future.

• Our Twisted Dual EC DRBG specification only gives explicit curves and points for
λ = 384. It would be nice to have explicit curves and points for other values of the
security parameter λ. However, in practice this is difficult because of three constraints:

– The underlying finite field should have order extremely close to a power of 2.

– Both the elliptic curve and its quadratic twist must have prime order.

– Both the elliptic curve and its quadratic twist must be safe curves.

Notably, the curve we chose for λ = 384 is not a safe curve because its constants could
have been manipulated by the U.S. government. Ideally, we would choose a safer curve,
but finding one is computationally expensive.

• Investigate variants involving different extractions of a and b from the secret state s.

• Rigorize the meaning of “high probability” in Claims 2.1 and 2.2.

• Develop a more detailed implementation of the Twisted Dual EC DRBG resistant to
side channel attacks.

– Scalar multiplication on an elliptic curve can be implemented in a way that works
directly with the x-coordinates, which resists against side channel attacks and
speeds up the DRBG.

5 Work Distribution

Holden devised the algorithm and worked on writing the paper. Linus worked on the imple-
mentation and runtime analysis. Noah worked on the security analysis.
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