6.5610 Final Report - BLE

Caden Gradek Yiqing Du Rishab Parthasarathy Arnold Su
cgradek@mit.edu yiqingdu@mit.edu rpartha@mit.edu arnoldsu@mit.edu

Abstract

As wearable health devices become increasingly integrated into daily life, the
security of their wireless communications is of growing concern—especially given
the sensitive nature of the physiological data they transmit. Many of these devices
rely on Bluetooth Low Energy (BLE) for connectivity, but often use insecure
pairing methods like Just Works, which sacrifice authentication for ease of use. In
this study, we investigate the vulnerabilities of BLE pairing protocols, focusing on
the feasibility of a Man-in-the-Middle (MitM) attack. Using a Nordic nRF52840
USB dongle configured with BLE sniffer firmware, we intercepted and analyzed
live BLE traffic between a commercial heart rate monitor and a mobile device.
We demonstrate that, under Just Works pairing, an attacker can fully decrypt and
relay data between two devices without detection. Our analysis reveals that even
encrypted BLE sessions can be compromised when authentication is absent or
improperly implemented. To address these risks, we discuss hardware-constrained
alternatives, such as low-power input methods and Out-of-Band (OOB) pairing
mechanisms, that offer stronger security guarantees while maintaining usability for
health-focused wearables.

1 Introduction

In recent years, wearable health devices, such as heart rate monitors and fitness trackers, have gained
widespread adoption. These devices enable users to track key health metrics such as heart rate, step
count, and sleep patterns. However, with the growing prevalence of these health monitors comes an
important consideration: security. Many of these wearable health items operate under significant
power and computational constraints, which often necessitate the use of communication protocols
that prioritize efficiency over reliability and security.

Bluetooth Low Energy (BLE) has become the most widely used communication protocol for Internet
of Things (IoT) devices like health monitors, and is currently used in billions of devices worldwide
(1). Many of these devices rely on BLE to facilitate seamless data transfer, which, while effective for
quick and low-power data exchange, can be vulnerable to various security threats like eavesdropping
and Man-in-the-Middle (MitM) attacks, which we exploit in this study. Although newer Bluetooth
standards offer enhanced security features designed to mitigate these risks, their effectiveness is often
undermined by improper implementation or non-adoption in device firmware and software (1). Many
researchers have already raised concerns about the reliance on BLE protocols, and in particular on
the security and privacy of BLE itself(2)) (1).

The trade-off between ease-of-use and robust security becomes even more critical as the sensitivity of
the data transmitted grows (3)) (4)). Specifically, health information is regarded as the most confidential
of all types of personal information, with surveys showing that a majority of people believe that
health information is sensitive or confidential in nature. Furthermore, less than 50% of people
who use wearable health monitors understand the device’s information security policies and how
the companies are protecting their privacy. Even fewer people are familiar with how their device,
transmits, stores, and handles their sensitive information (5). Existing studies have already posited
that the information collected by these devices, when combined with other sources of data and

6.5610 Applied Cryptography Final Project (Spring 2025).

publicly available information, can reveal sensitive information about individuals, breaching their
privacy (6). We thus believe it is worthwhile to examine these devices more closely, so as to spread
awareness and make clear the exact security and privacy risks.

In this study, we are therefore interested in investigating the security of these health wearables—for
example, answering questions like: is it possible for us to extract personal health data simply
by looking at Bluetooth packets? Secondly, we aim to study alternative cryptographic strategies
compatible with BLE constraints that can be used to prevent attacks and bolster data protection for
users of health monitors.

2 Related Works

2.1 BLE legacy vs current BLE methods

Bluetooth Low Energy (BLE) connection security has evolved significantly since its inception. The
initial approaches, used in BLE versions 4.0 and 4.1, are known as Legacy Connections (7). This
method utilizes a custom, multi-phase key exchange protocol, which has been identified as a source
of significant security concerns (1). Understanding the distinction between these older connections
and the newer Secure Connections (BLE v4.2+) is crucial for appreciating the security implications
for devices like health wearables.

2.1.1 BLE Legacy Connections (Versions 4.0 & 4.1)

Legacy Connections rely on a custom-designed, three-phase process for pairing devices and establish-
ing an encrypted link. Unfortunately, this process contains significant security weaknesses, primarily
stemming from the transmission of critical information without encryption (in plaintext) (1)).

* Phase 1: Feature Exchange: To determine the appropriate pairing method (see Section
2.2), the devices begin by exchanging details in plaintext about their capabilities—such
as authentication requirements, preferred key sizes, and whether they support input/output
features like a display or keyboard. (1)) (7).

* Phase 2: Key Generation: This is the phase where security is meant to be established, but it

remains at the core of many attacks (1). Devices first agree on a Temporary Key (TK) using
a pairing method chosen based on the capabilities exchanged in Phase 1. The security of
the entire connection heavily relies on this TK (7). Next, each device generates a 128-bit
random number (Mrand for the controller, Srand for the periphery). Critically, these random
numbers are also exchanged completely unencrypted (1) (7). Using the TK, the plaintext
random numbers, and other parameters (like device addresses), the devices send signatures,
which are calculated confirmation values (Mconfirm, Sconfirm), which they exchange to
verify they possess the same TK (7). Once signatures have confirmed that the devices agree
on the TK, the devices use the TK and the exchanged random numbers to compute an
encryption key for the current pairing session, which is called the Short-Term Key (STK)
).
However, this system is vulnerable to attacks. The biggest issue here is the plaintext
exchange of Mrand and Srand. If an attacker can guess or brute-force the TK (which can
be trivial in the "Just Works" pairing model where TK is 0, or feasible if a short, guessable
PIN is used in Passkey Entry (8)), they have everything needed to calculate the exact same
STK as the legitimate devices (1)). They simply perform the same cryptographic function
using the known TK and the eavesdropped plaintext random numbers. Once the attacker has
the STK, they can decrypt all the supposedly secure communication for that session and
potentially inject malicious packets (9). The entire session’s security hinges on the secrecy
of the TK, which is often not well protected depending on the pairing method selected based
on device capabilities (L)).

* Phase 3: Bonding (Optional): If devices decide to remember each other for future connec-
tions, they exchange longer-term keys in this phase, such as the Long-Term Key (LTK),
Identity Resolving Key (IRK), and Connection Signature Resolving Key (CSRK). While
these keys are encrypted, they are encrypted using the STK derived in Phase 2 (1). Conse-
quently, if an attacker compromised the STK in Phase 2, they can also decrypt and steal

these vital long-term keys (9). This compromises not just the current session, but potentially
all future connections and device identification capabilities (L)).

During Phase 1, an attacker passively eavesdropping can immediately learn about the devices involved
and how they intend to pair since this information is sent in plaintext (1). This gives the attacker
valuable intelligence for planning subsequent attacks, such as predicting the pairing method that will
be used or preparing for a Man-in-the-Middle (MitM) attack (9) (1).

2.1.2 BLE Secure Connections (Versions 4.2 and newer)

Secure Connections were specifically designed to overcome the vulnerabilities inherent in the Legacy
method (10). However, we note that devices with BLE Secure enabled can still use Legacy pairing
techniques to connect to Legacy devices (1)). Overall, the primary improvement in BLE Secure is
a complete overhaul of Phase 2 (Key Generation). Secure Connections discard the flawed custom
protocol involving TK, plaintext random numbers, and STK generation. Instead, they implement the
industry-standard, Elliptic Curve Diffie-Hellman (ECDH) key exchange algorithm, specifically using
the P-256 curve (10).

ECDH is a form of asymmetric (public-key) cryptography used for key agreement (11). Each device
generates a temporary, secret ECDH private key and a corresponding public key. Using its own
private key and the other device’s public key, each device performs an ECDH computation. Due to
the mathematical properties of elliptic curves, both devices will independently arrive at the exact
same shared secret value (11). This shared secret is then used along with nonces exchanged between
the devices to derive the Long-Term Key (LTK) using a key derivation function (10). However, the
devices still exchange their public keys openly, which means that an attacker can observe these public
keys (10).

The key benefit of ECDH is that the shared secret (and thus the LTK) is generated without ever
transmitting sensitive keying material directly over the air. An eavesdropper observing the public
key exchange cannot compute the resulting shared secret without knowing at least one of the private
keys, which is computationally infeasible for the standardized P-256 curve (11). This provides strong
protection against passive eavesdropping attacks that could easily compromise Legacy Connections
(10).

This securely generated LTK is then used directly to encrypt the communication link. Pairing methods
(like Passkey Entry, Out of Band) are still employed in Secure Connections, but they are used to
authenticate the key exchange, ensuring that the devices are indeed communicating with the intended
partner and preventing MitM attacks during the pairing process (10)(9). This authentication step
binds the identity of the devices to the securely generated key.

In essence, Secure Connections replace the vulnerable, custom key generation mechanism of Legacy
Connections with a strong, standardized public-key cryptography approach (ECDH) coupled with
authenticated pairing methods. This vastly improves protection against the eavesdropping, MitM,
and key-recovery attacks present in earlier BLE versions (1)) (9). However, we note that Just Works
pairing in Secure Connections provides no authentication, making it vulnerable against a potential
MitM attack, as discussed below (12).

2.2 BLE Pairing Methods

The BLE standard defines several pairing methods, which are chosen based on the input/output
(I/0) capabilities of the connecting devices (e.g., presence of a display, keyboard, or confirmation
button) (13). These methods are used in both Legacy and Secure Connections, but their role and
security implications differ significantly between the two modes. The primary goals are typically
authentication (verifying the identity of the peer device to prevent Man-in-the-Middle attacks) and, in
Legacy Connections, the generation or exchange of the Temporary Key (TK).

2.2.1 Just Works

Just Works is used when neither device has a display or keyboard for entering/confirming codes. The
devices connect without requiring user interaction beyond perhaps an initial confirmation prompt.

Legacy Connections: This is highly insecure. The Temporary Key (TK) is set to zero (14)). This
provides no protection against passive eavesdropping (as the key used to derive the STK is known)
and no protection against Man-in-the-Middle (MitM) attacks (12)). An attacker can easily compute
the STK and decrypt communication, or impersonate either device.

Secure Connections: Secure Connections use ECDH to generate the LTK, protecting against passive
eavesdropping, however, the Just Works authentication step itself still offers no MitM protection (12)).
An attacker could potentially intercept the pairing process before authentication completes, although
the link encryption uses the strong ECDH-derived key. It remains the least secure option and is not
recommended when MitM protection is needed (12).

2.2.2 Passkey Entry

Passkey Entry is used when one device has a display and the other has a keyboard (or equivalent
input method). One device displays a 6-digit passkey, and the user must enter this same passkey on
the other device (1)).

Legacy Connections: The 6-digit passkey becomes the TK (1). This provides MitM protection
because the attacker doesn’t know the passkey being entered by the user. However, it’s still vulner-
able to passive eavesdropping if the attacker can guess the 6-digit passkey (1 million possibilities,
potentially brute-forceable offline) (8). It’s also vulnerable if an attacker can observe the user entering
the key (e.g., "shoulder surfing").

Secure Connections: The passkey is not used directly as the TK. Instead, it is processed with a nonce
before being used in the ECDH key exchange. This provides MitM protection during authentication,
and the underlying link encryption relies on the strong ECDH key, which when combined with the
nonce, makes it much more secure against eavesdropping than the Legacy version (1)).

2.2.3 Numeric Comparison

Numeric Comparison requires both devices to have a display and at least a confirmation button (e.g.,
Yes/No). Both devices independently calculate and display the same 6-digit number. The user must
verify that the numbers match on both devices and confirm on each. This method was introduced with
Secure Connections (BLE v4.2), and hence is not available in Legacy Connections (10). It provides
MitM protection during authentication. If an attacker tries to intercept the connection, the numbers
displayed on the two legitimate devices will not match (as the attacker would be performing separate
ECDH exchanges with each device), and the user should reject the pairing (12). This is considered a
secure method, provided the user diligently checks the displayed numbers, as it builds upon the Just
Works method by adding a numerical verification layer (1)).

2.2.4 Out of Band (OOB)

OOB uses a secondary communication channel (e.g., Near Field Communication - NFC, QR codes)
to exchange cryptographic data used in the BLE pairing process (15) (16). This avoids transmitting
sensitive pairing data over the potentially insecure BLE radio channel during the initial setup.

Legacy Connections: The OOB channel can be used to securely exchange a TK (up to 128 bits) or
other necessary pairing values (7)) (15). If the OOB channel itself is secure against eavesdropping and
MitM, this is considered one of the most secure methods for Legacy Connections (12).

Secure Connections: The OOB channel can be used to exchange information needed for authenti-
cated ECDH, such as public keys or confirmation/random values derived from them (10) (15). Again,
the security relies heavily on the security properties of the OOB channel itself. It offers the potential
for the highest security level if implemented correctly (13).

3 Methodology

3.1 Experiment Overview

With the understanding that most heart rate monitors operate using the Just Works pairing method,
we are interested in the practical security afforded by these devices. Specifically, we are interested in
the possibility of reading heart rate data packets without alerting the device user. For our experiments,

we tested on the CooSpo H6 Chest Strap Heart Rate Monitor. In order to carry out the MitM attack,
we used the Nordic Semiconductor nRF52840 USB Dongle. Using the dongle’s integration with
Wireshark, we attempted to intercept the packets between the CooSpo Heart Rate Monitor and an
iPhone.

3.2 nRF52840 Dongle

Nordic Semiconductor’s nRF52840 USB Dongle is low-cost ($10), compact, and USB-powered.
The dongle supports communication across multiple protocols, including Bluetooth 5.4, Bluetooth
mesh, Thread, or Zigbee. In addition, Nordic Semiconductor provides tutorials and Python code for
integration support with Wireshark, an open-source packet analyzer.

Although the nRF52840 Dongle is intended primarily for Bluetooth developers, this technology can
easily be used by adversaries interested in sniffing a private BLE connection. The fact that we were
able to collect such sensitive data with a very cheap and commercial device is alarming to say the
least.

3.3 How Does the Attack Work?

In BLE Secure Connections using the Just Works pairing method, the Man-in-the-Middle (MitM)
attack involves active interception. In this setup, the attacker positions themselves between the
two devices at the moment of pairing and initiates two separate Just Works pairings: one with the
peripheral device (e.g., heart-rate monitor) and one with the central device (e.g., smartphone). Since
neither side has any mechanism to verify the identity of the peer (no numeric comparison or passkey
entry), both devices believe they are securely paired—when in fact, they are each paired with the
attacker. The attacker now becomes an invisible relay, decrypting, modifying, and re-encrypting all
traffic in real time using the two independently negotiated STKs. This attack is visualized in Figure

M h
g i IECDH , w ECDH yut
Alice Mallory Bob

Figure 1: [lustration of a Man-in-the-Middle (MitM) attempt during BLE Secure Connections. Alice
and Bob each perform an Elliptic Curve Diffie-Hellman (ECDH) key exchange, but Mallory intercepts
the pairing process and initiates separate ECDH exchanges with both parties. Without authentication
methods like Numeric Comparison or Passkey Entry, Mallory can establish two secure-looking links
and relay messages between Alice and Bob undetected

This attack is especially viable in environments where BLE devices automatically reconnect to
previously paired devices, or where users are unaware of the pairing security implications. Moreover,
the low power and I/O constraints of many health-monitoring wearables make it common for
manufacturers to choose Just Works due to its convenience and simplicity, even though it provides no
MitM resistance.

The result is that sensitive physiological data, such as live heart rate measurements, can be intercepted
and potentially modified without detection. Our experimental setup confirms that, once pairing is es-
tablished using Just Works, a properly positioned attacker can fully impersonate both communicating
devices and gain access to all exchanged data, highlighting the critical need for authenticated pairing
methods in BLE health devices.

3.4 Identifying Heart Rate Devices

Before we can intercept heart rate communication between devices, we must first identify the MAC
address of the target heart rate monitor. Thankfully, Nordic Semiconductor’s nRF Connect software
provides some convenient tooling for identifying Bluetooth devices. Using nRF Connect for Desktop
Bluetooth Low Energy, we were able to configure the dongle to read out all devices advertising BLE

connections. For any advertising BLE device, we could read the device name, MAC address, and
device services without interacting with the device. It is extremely easy to identify heart rate devices
since these devices include Heart Rate services within their advertisement. Once we have identified
the target device using either the device name or services, we can pass the corresponding MAC
address along to the Wireshark integration. Since these MAC addresses never change, we never have
to repeat this step after identifying the MAC address for a device once.

heart rate sensor -46 dBm _ul
E4:15:F6:60:DC:03
~ Details

Address type: Public

Advertising type:
Connectable undirected

Services: Heart Rate
Battery Service

Flags: LelLimitedDiscMode
BrEdrNotSupported
LeOnlyLimitedDiscMode
LeOnlyGeneralDiscMode

Figure 2: nRF Connect output for the CooSpo Heart Rate Monitor. While the heart rate monitor is
looking to pair with a device, it advertises details about its connection. Included is the MAC address,
device name, and device services.

3.5 Capturing Packets using Wireshark

Once we have identified the MAC address of the target device, we can begin to utilize Nordic
Semiconductor’s Wireshark integration for the dongle. Before pairing occurs, we specify in the
dongle-Wireshark interface to target only packets corresponding to the MAC address. As pairing
begins, the dongle hijacks the connection and acts as a Man-in-the-Middle as explained in Section[3.3]
If the dongle successfully intercepts the connection, the decrypted heart rate communication begins
to appear in the Wireshark packet window. Meanwhile, the communication between the iPhone and
heart rate monitor proceeds as normal, and the heart rate user is unable to discern that their data is
now exposed. In our small testing sample, we found that the dongle successfully intercepted the
pairing connection more than half the time.

4 Results

In the course of our experiments, we successfully conducted a packet sniffing session between two
paired BLE devices. Through careful observation and analysis of the captured traffic, we were able to
identify both the MAC addresses involved and the specific protocol-level interactions that correspond
to the transmission of heart rate data. Because of the built-in support for BLE packets in Wireshark,
we found that the heart-rate data was transmitted using a Handle Value Notification (Opcode 0x1b) on
attribute handle 0x0012. See Figure3]to find a screenshot of how Wireshark was able to successfully
identify packets that are transmitting heart-rate data.

This observation allowed us to construct a filter for isolating the relevant packets in Wireshark:

btle.length != 0 && btatt && btatt.handle == 0x0012 && btatt.opcode == Oxlb

This filter ensures that only non-empty BLE packets containing ATT notifications from the heart rate
characteristic are displayed. Within these packets, we observed that the second byte of the value field
consistently represents the actual heart rate value measured by the peripheral device. See Figure[d]
where we were able to see which byte of the data corresponds to "Value", which is the heart-rate. We
were able to confirm this when sniffing future transmissions, even when Wireshark was unable to
fully parse the information for us.

btle.Jength 1= 0 && btatt && btatt.handle == 0x0012 && btatt.opcode == Ox1b.

Interface) Help
No. Time Source Destination Protocol | Lengtt Info
544 57.173958 Peripheral 8x50654. Central 8x50654426 ATT 43 Revd Handle Value Notification, Handle: €x0012 (Unknown: Heart Rate Measurement)
552 61.373975 Peripheral 0x50654.. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
558 64.524044 Peripheral 0x50654. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
566 68.724142 Peripheral 0x50654. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
568 69.774188 Peripheral 0x50654. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
570 70.824213 Peripheral 0x50654.. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
572 71.874237 Peripheral 8x50654. Central 8x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
574 72.924261 Peripheral 0x50654. Central 8x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
576 73.974280 Peripheral 0x50654. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
584 78.699396 Peripheral 0x50654. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: @x0012 (Unknown: Heart Rate Measurement)
500 83.949506 Peripheral 0x50654. Central 8x50654426 ATT 37 Revd Handle Value Notification, Handle: @x0012 (Unknown: Heart Rate Measurement)
592 86.049553 Peripheral 0x50654. Central 8x50654426 ATT 37 Revd Handle Value Notification, Handle: @x0012 (Unknown: Heart Rate Measurement)
507 92.349694 Peripheral 0x50654.. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
509 93.924729 Peripheral 0x50654.. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
601 94.974752 Peripheral 0x50654.. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
608 101.800355 Peripheral 0x50654. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
610 103.899942 Peripheral 0x50654.. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
612 104.949966 Peripheral 0x50654. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
614 107.575019 Peripheral 0x50654. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)
616 109.675061 Peripheral 0x50654.. Central 0x50654426 ATT 37 Revd Handle Value Notification, Handle: 0x0012 (Unknown: Heart Rate Measurement)

Figure 3: Screenshot of Wireshark successfully parsing and analyzing packet data between the heart
rate monitor and mobile device. We can see that the packets associated with packets using handle
value notification (opcode 0x1b) on attribute handle 0x0012 is heart-rate measurement data.

Figure 4: Individual packet data being transmitted from the heart-rate monitor to the paired mobile
device. In this packet in particular, Wireshark was able to successfully parse the data and identify
which byte corresponds to the heart-rate value itself.

The filter has enabled us to reliably extract real-time heart rate data from BLE communication streams.
In Figure[5] we can see that by applying the filters and processing out that second byte of the value
field, we were able to successfully (almost identically) recreate the heart-rate data being transmitted
to the officially supported mobile app.

0:00:40 0:01:20

100 +

90 -

80 1

Heart Rate

70

60

Figure 5: The top plot is the captured heart rate from the heart rate monitor from the officially
supported mobile app for the device. The bottom is created by us by parsing packet data captured in
Wireshark. The capturing window is the same for both plots.

5 Discussion

Our findings raise important concerns regarding the security and privacy of Bluetooth Low Energy
(BLE) heart rate monitors. The relative ease with which we were able to sniff heart rate data
between two paired BLE devices highlights a significant vulnerability. Despite the presence of more

sophisticated and secure pairing mechanisms in BLE, heart rate monitors often rely on lightly secured
communication channels, which allow third parties to intercept sensitive physiological data without
detection or authorization.

This vulnerability is especially troubling in medical contexts because it involves deeply personal
and sensitive information that can have lasting consequences for an individual’s privacy and safety.
Breaches can lead to discrimination in employment, insurance, or social contexts. The sensitivity of
this data makes safeguarding it imperative.

To address this issue, we evaluated several user-friendly and technically feasible security enhance-
ments aimed at strengthening the device pairing process and protecting data integrity, recognizing
that the attack and security vulnerabilities come from the limitations on the pairing process between
devices. As a whole, it is often an engineering decision to use these insecure pairing methods because
of the energy needs of more sophisticated methods. These devices often also value convenience and
ease-of-use for their consumers, especially during the pairing process.

However, as explained in Section[2.2.2]and Section[2.2.3] a secure solution against the MitM attack
we implemented is a passkey-based-system. The concern, however, is maintaining the low-energy
requirements of these BLE devices. For instance, implementing a screen onto the heart-rate monitor
would be too energy intensive, and make it no longer a low-energy device. However, by selectively
choosing an I/O device such as a dial that is low-energy, we believe that we can significantly increase
security, without compromising usability and energy consumption.

Alternatively, we also want to propose two solutions that utilize a secondary communication channel,
or Out of Band (OOB) connection (see Section @]) One such method is using QR codes as a
pairing method. QR codes are secure, easy to use, and easily implementable on health care devices.
However, one key concern is people who use health care monitors (especially those who use them as
fitness trackers) often put the monitors under more strenuous conditions. Environmental factors like
dust, sweat, and water could degrade a QR code, affecting its long-term readability. Outside of QR
codes, near field communication (NFC) technology is another OOB pairing method that is secure
against MitM attacks. NFC is already widely implemented in the most secure devices such as credit
cards. We believe it is worth considering porting over this technology to healthcare devices.

For all of these methods, the cost is low (around $10 at maximum) along with being low power. Even
for the only powered device, which is NFC, the power consumption is supplied through magnetic
eddy currents from the active device (such as the phone trying to tap). These currents are independent
of the low-energy BLE device and also are at most of the order of 10 milliamps, which is within the
energy range of standard BLE (10; [17).

6 Contribution

Caden identified relevant health devices and profiled their BLE capabilities, Yiqing did background
research and discovered the attack vector, Rishab researched the hardware aspect of Bluetooth sniffing
and implemented the final version of the attack, and Arnold analyzed the results, synthesized plots,
and proposed solutions. All team members contributed equally.

References

[1] A. Barua, M. A. Al Alamin, M. S. Hossain, and E. Hossain, “Security and privacy threats
for bluetooth low energy in iot and wearable devices: A comprehensive survey,” IEEE Open
Journal of the Communications Society, vol. 3, pp. 251-281, 2022.

[2] A. K. Das, P. H. Pathak, C.-N. Chuah, and P. Mohapatra, “Uncovering privacy leakage in
ble network traffic of wearable fitness trackers,” in Proceedings of the 17th International
Workshop on Mobile Computing Systems and Applications, HotMobile *16, (New York, NY,
USA), p. 99-104, Association for Computing Machinery, 2016.

[3] S. Seneviratne, Y. Hu, T. Nguyen, G. Lan, S. Khalifa, K. Thilakarathna, M. Hassan, and
A. Seneviratne, “A survey of wearable devices and challenges,” IEEE Communications Surveys
Tutorials, vol. 19, no. 4, pp. 2573-2620, 2017.

[4] T.Zhang,J. Lu, F. Hu, and Q. Hao, “Bluetooth low energy for wearable sensor-based healthcare
systems,” in 2014 IEEE healthcare innovation conference (HIC), pp. 251-254, 1IEEE, 2014.

[5] L. Cilliers, “Wearable devices in healthcare: Privacy and information security issues,” Health
Information Management Journal, vol. 49, no. 2-3, pp. 150-156, 2020. PMID: 31146589.

[6] K. Montgomery, J. Chester, and K. Kopp, “Health wearables: ensuring fairness, preventing
discrimination, and promoting equity in an emerging internet-of-things environment,” Journal
of Information Policy, vol. 8, pp. 34-77, 2018.

[7] Bluetooth Special Interest Group (SIG), “Bluetooth Core Specification Version 4.0, Vol 3,
Part H, Security Specification,” tech. rep., Bluetooth Special Interest Group (SIG), Jun 2010.
Available online at https://www.bluetooth.com/.

[8] M. Ryan, “Bluetooth: with low energy comes low security,” in Proceedings of the 7th USENIX
Conference on Offensive Technologies, WOOT’ 13, (USA), p. 4, USENIX Association, 2013.

[9] D. Antonioli, N. O. Tippenhauer, and K. Rasmussen, “The KNOB is Broken: Exploiting Low
Entropy in the Encryption Key Negotiation of Bluetooth BR/EDR,” in Proceedings of the 29th
USENIX Security Symposium (USENIX Security °20), pp. 1447-1464, USENIX Association,
Aug. 2020.

[10] Bluetooth Special Interest Group (SIG), “Bluetooth Core Specification Version 4.2, Vol 3,
Part H, Security Specification,” tech. rep., Bluetooth Special Interest Group (SIG), Dec 2014.
Auvailable online at https://www.bluetooth.com/.

[11] National Institute of Standards and Technology (NIST), “Special Publication 800-56A Revision
3: Recommendation for Pair-Wise Key-Establishment Schemes Using Discrete Logarithm
Cryptography,” Tech. Rep. NIST SP 800-56Ar3, U.S. Department of Commerce, Apr 2018.

[12] N. Semiconductor, “Legacy pairing vs le secure connections.” Nordic Developer Academy, n.d.
Accessed: 2025-04-24.

[13] T. Instruments, “Bluetooth low energy (le) - security fundamentals.” SimpleLink Academy for
CC23xx, n.d. Accessed: 2025-04-24.

[14] Y. Horbenko, “How secure is the ble communication standard?.” Lemberg Solutions Blog, Mar
2019. Accessed: 2025-04-24.

[15] ndeflib developers, “Bluetooth secure simple pairing.” ndeflib 0.3.2 documentation, n.d. Ac-
cessed: 2025-04-24.

[16] M. Brabham and M. Watson, “Pairing Bluetooth devices via QR code,” Defensive Publication
4589, Technical Disclosure Commons, Sep. 2021. Accessed on 2025-04-26.

[17] NXP Semiconductors, “NTAG213, NTAG215, NTAG216 - NFC Forum Type
2 Tag compliant ICs” |https://www.nxp.com/products/rfid-nfc/nfc-hf/
ntag/ntag213-ntag215-ntag216-nfc-forum-type-2-tag-compliant-ics:
NTAG213_215_216, 2014. Accessed: 2025-05-12.

https://www.nxp.com/products/rfid-nfc/nfc-hf/ntag/ntag213-ntag215-ntag216-nfc-forum-type-2-tag-compliant-ics:NTAG213_215_216
https://www.nxp.com/products/rfid-nfc/nfc-hf/ntag/ntag213-ntag215-ntag216-nfc-forum-type-2-tag-compliant-ics:NTAG213_215_216
https://www.nxp.com/products/rfid-nfc/nfc-hf/ntag/ntag213-ntag215-ntag216-nfc-forum-type-2-tag-compliant-ics:NTAG213_215_216

	Introduction
	Related Works
	BLE legacy vs current BLE methods
	BLE Legacy Connections (Versions 4.0 & 4.1)
	BLE Secure Connections (Versions 4.2 and newer)

	BLE Pairing Methods
	Just Works
	Passkey Entry
	Numeric Comparison
	Out of Band (OOB)

	Methodology
	Experiment Overview
	nRF52840 Dongle
	How Does the Attack Work?
	Identifying Heart Rate Devices
	Capturing Packets using Wireshark

	Results
	Discussion
	Contribution

