
Open questions
Notes by Henry Corrigan-Gibbs and Yael Kalai

MIT - 6.5610
Lecture 21 (April 28, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

The plan today is to revisit each of the topics that we covered in
the course, and to look at a few of the open research problems in
each area. My goals today are to (1) entertain you and (2) convince
you that cryptography is one of the most exciting research areas in
computer science.

One-way functions, PRGs, PRFs, etc.
One surprise is that it is possible to
construct information-theoretically
secure one-time MACs with short keys.
This construction, due to Wegman and
Carter [11], inspired the “Galois MAC”
that AES-GCM uses.

The revolutionary idea of modern crypto is to base the security of
cryptosystems on the conjectured hardness of some computational
problem. While cryptographers had implicitly used this idea for

Early cryptographers never (as far as I
know) based the security of their cryp-
tosystems on explicit computational
assumptions. Of course, the vast major-
ity of cryptosystems—the one-time pad
being the exception—were implicitly
based on hard computational problems.

centuries, it was not until the field of computational complexity
developed—along with the notions of the complexity classes P, NP,
etc.—that we could give clean formalizations of these notions.

In Shannon’s era, we essentially classi-
fied computational problem as “com-
putable” (e.g., factoring) or “not com-
putable” (e.g., the Halting problem).
It makes sense, then, that Shannon’s
notion of security for a cryptosystem
required security in the face of an
adversary who could compute any
computable function.

Towards constructing encryption systems with short keys, we
defined one-way functions, pseudorandom functions (PRF), pseudo-
random permutations (PRP), and pseudorandom generators (PRG).
There are a number of deep open questions even about these simple
objects. Let me mention just a few, in decreasing order of depth.

Do one-way functions exist?

Most of us believe one-way functions exist, even if we have no idea
how to prove it. Recall that

(P = NP)⇏ ∃OWF therefore ∃OWF⇒ (P ̸= NP).

Even P ̸= NP is not enough. Proving that one-way functions exist
requires proving something stronger than P ̸= NP. More specifically, Russell Impagliazzo [7] has a really nice

paper on these relationships.P ̸= NP only implies that there exist hard instances of certain compu-
tational problems (e.g., 3SAT). But to construct a one-way function,
we need to come up with a computational problem that is hard on
most inputs (i.e., “hard on average”) and for which we can efficiently
sample an instance along with its “solution.” Think of the pair (x, f (x)), for a one-

way function f , as a solution-problem
pair.

open questions 2

More concretely, think of any one-way function f : {0, 1}n →
{0, 1}m that takes as input n random bits and outputs an m-bit string.
The task is: given f (x) recover an x′ such that f (x′) = f (x). It could
be that all functions f are easy to invert as one-way functions. More
formally, for all choices of the security parameter n and for all func-
tions f it could be that there is a p.p.t. algorithm A such that:

Pr

[
f (x′) = f (x) :

x ←R {0, 1}n

x′ ←R A(f (x))

]
> 1/ poly(n).

However, it could be that for many functions f there is no adver-
sary A that inverts a random point in the image of f . That is, there exist
functions f such that for all choices of the security parameter n there
does not exist a p.p.t. algorithm A where

Pr

[
f (x′) = y :

y←R {0, 1}m

x′ ←R A(y)

]
>

1
2

.

This would be very sad: We still would not have one-way func-
tions but our favorite computational problems (e.g., 3SAT) could still
be hard.

Outlook. Since I do not expect to see a resolution to the P-versus-NP
problem any time soon, I really have no hope of seeing a proof that
one-way functions exist unconditionally. The strange thing, of course,
is that it seems very easy to construct one-way functions: If you cook
up any crazy function on n bits, for n large enough, there is a good
chance that it will be hard to invert on random inputs. (But if you
have learned anything in this course, I hope that you have learned to
not try to cook up your own one-way functions.)

Scott Aaronson has a really nice paper on the P versus NP prob-
lem that I would recommend if you are interested in this question.
The paper is at: https://www.scottaaronson.com/papers/indep.pdf.

Can we build key exchange from one-way functions?

Another one of the famous open problems in cryptography, that also
seems very difficult to solve, is to construct a key-exchange protocol
from any one-way function. That is, if I give you a circuit imple-
menting an arbitrary one-way function can you use that circuit to
construct a key-exchange protocol that is secure if the underlying
one-way function is?

As we have seen in this course, we know how to construct key-
exchange protocols from the hardness of the Computational Diffie-
Hellman problem, RSA, factoring, LWE, and many other assump-
tions. But can we construct a key-exchange protocol whose security is
based only on the hardness of inverting a one-way hash function? As I mentioned at the start of the

course, Ralph Merkle was an undergrad
when he defined the notion of public
key exchange and constructed this
protocol.

https://www.scottaaronson.com/papers/indep.pdf

open questions 3

Lest you think that this is a totally absurd idea, let me present
Ralph Merkle’s key-exchange protocol based on hash functions. The
catch is that Merkle’s protocol runs in time O(n) for the honest par-
ties and the best attack runs in time O(n2), on security parameter n. In contrast, the best attack on standard

Diffie-Hellman key exchange in elliptic-
curve groups runs in exponential time,
roughly 2n/2.Setup. Alice and Bob share a public hash function H : [n2] → Y

which we model as a random oracle, and where Y is some set of
exponentially large size. We use the convenient notation [x] =

{1, . . . , x}.

Merkle’s Key-Exchange Protocol.

1. Alice picks n numbers a1, . . . , an ←R [n2].
She sends H(a1), . . . , H(an) to Bob.

2. Bob picks n numbers b1, . . . , bn ←R [n2].
He sends H(b1), . . . , H(bn) to Alice.

3. Alice and Bob find the least i, j ∈ [n] such that

H(ai) = H(bj).

(If no such pair exists, restart the protocol.) They use k = ai = bj as
their shared secret. Actually, they would hash k with an

independent hash function and use the
result as their shared secret.

Correctness. By the Birthday Paradox, Alice and Bob will agree on
a shared secret with good probability: they are each sampling n
numbers from {1, . . . , n2}.

Security. We will not make the argument formal, but we can indeed
prove security if we model the hash function H as a random oracle.
In particular, any attacker that makes o(n2) queries to the hash func-
tion H has a negligible chance of recovering Alice and Bob’s shared
secret.

It is not possible to build a better-than-Merkle key-exchange proto-
col from just a random oracle [1]. But it could be possible to build a
key-exchange protocol that makes “non-black-box” use of a one-way
function. That is, the construction would have to do more than just
invoke the one-way function as an oracle. A non-black-box construc-
tion might, for example, somehow exploit the internals of the circuit
computing the one-way function. Such a construction would have
to be clever in new ways, but could potentially give us a radically
different type of post-quantum-secure key exchange.

open questions 4

Private information retrieval (PIR)

In this class, we saw a single-server private-information-retrieval
scheme, in which the client communicates with a single server and
the security holds under some cryptographic assumption (e.g., LWE).

Computation cost of single-server PIR

On database size n, the PIR scheme we saw requires the server to
do work Ω(n) to answer each client’s query. A relatively simple In contrast, a non-private database

lookup takes constant time on a RAM
machine.

argument, due to Beimel, Ishai, and Malkin, shows that Ω(n) work is
necessary if the server stores the database in its original form.

A shocking recent result [8] shows that if the server stores the
database in encoded form, it can answer client queries in time polylog(n)!
Tragically, this scheme is wildly expensive in concrete costs [9]:
querying a 256 MB database would take one month of server com-
putation!

Are there concretely efficient single-server PIR schemes that en-
code the database to get sublinear server-side computation cost?

Communication cost of two-server PIR

In two-server PIR, the client communicates with two servers and se-
curity holds information-theoretically, provided that the adversary
cannot compromise both servers.

One longstanding open question is: What is the two-server information-
theoretically secure PIR scheme with the lowest communication cost?

Dvir and Gopi [5] give a scheme with cost n
O(

√
log log n

log n)
, which is less

than nϵ for all ϵ > 0. Is there a scheme with polylog(n) communica-
tion cost?

If we assume the existence of one-way functions, we can get a
two-server PIR scheme with communication cost O(λ log n) from
distributed point functions [3]. Here, λ is a security parameter, and
we must assume the existence of a length-doubling PRG with seed
length λ and λ-bit security.

Can we get a scheme with communication cost O(λ + log n) from
just the assumption that one-way functions exist? If we assume LWE, then from fully

homomorphic encryption, we can get
a single-server scheme with poly(λ) +
O(log n) communication cost.Aside: Distributed point functions (DPFs). DPFs are a very neat cryp-

tographic primitive: they give a way to compress secret-shares of a
one-hot vector. “Function secret sharing” is a general-

ization of distributed point functions to
other types of structured vectors.

A distributed point function (DPF) over a field F and output
length n consists of algorithms:

• Gen(1λ, i ∈ [n], v ∈ F)→ (s0, s1).

open questions 5

• Eval(si)→ x ∈ Fn.

Correctness for a DPF states that the shares s0, s1 are compressed
additive shares of the vector v · ei ∈ Fn, where ei ∈ Fn is the vector
of all zeros with a “1” in position i. That is, for all λ ∈ N, i ∈ [n], and
v ∈ F: if we take (s0, s1)← Gen(1λ, i, v), then

Eval(s0) + Eval(s1) = v · ei ∈ Fn.

Security for a DPF states that each share individually hides both
i and v. That is, there exists a p.p.t. simulator Sim such that for all
β ∈ {0, 1}, i ∈ [n], and v ∈ F:

{sβ : (s0, s1)← Gen(1λ, i, v)}λ
c≈ {Sim(1λ, β)}λ.

Given a DPF, the construction of a two-server PIR scheme almost
immediate: the client generates compressed secret shares of a unit
vector (non-zero in the location of the database that the client wants
to read) and sends the shares to the servers. The servers expand the
shares, take the inner product of these shares with the database, and
return the answer to the client. Summing the servers’ answers gives
the client its database bit of interest.

Fully homomorphic encryption (FHE)

FHE without lattices or pairings. We have two ways to construct
fully homomorphic encryption today: One way is via lattice-type
assumptions—LWE and friends. The other way is via indistinguisha-
bility obfuscation, which relies on coding assumptions and pairing-
based cryptography. (We have not talked about pairings in this class.)

Is there a third way? Can you construct FHE from the assumption
that factoring or discrete log is hard?

FHE without bootstrapping. Moreover, today’s lattice-based FHE
schemes all use the “bootstrapping” approach that Alexandra de-
scribed in her guest lecture: The scheme performs some computation
on ciphertexts until the noise level in the ciphertexts becomes too
large. Then, the scheme refreshes the ciphertexts by homomorphi-
cally evaluting its own decryption circuit on the ciphertexts—this is
bootstrapping.

Bootstrapping is annoying for two reasons: First, it is computa-
tionally expensive, since the decryption circuit can be large. Second,
it requires an additional “circular security” assumption: we have to
assume that the encryption scheme is secure even if we publish the
encryption of the secret key under itself.

open questions 6

Can we construct FHE in a totally different way that does not
require bootstrapping?

Identification protocols and signature schemes

Is there a human-computable many-time-secure authentication protocol?

Say that you get stuck in the dessert in some faraway country hun-
dreds of miles away from the nearest ATM. (This actually happened
to me one time.) You call your parents and ask them to wire you $100

via Western Union—which to my surprise works even in places with-
out ATMs. But since your parents are cryptographers, they they want
to authenticate you first.

In particular, you share a secret key k with your parents. They
will read you a challenge message over the phone and you have to
respond, using only a paper and pencil. We want many-time security
against eavesdropping attacks: even if an attacker listens to many
interactions between you and your parents, the attacker shouldn’t be
able to impersonate you. If you had a PRF F, it would be easy

to construct such an authentication
protocol: your parents send a nonce r,
you reply with a ← F(k, r), and your
parents check that a = F(k, r). So an
equivalent question is whether it is
possible to construct a PRF (or even a
weak variant of a PRF) that a human
can compute.

The question, which I suspect Manuel Blum first posed, is whether
it is possible to construct an authentication scheme that a human can
implement with paper and pencil. What I like about this question is
that it first requires you to understand what humans can and cannot
compute. Just as we cannot talk about one-way functions without
having good models of machine computation, we cannot hope to talk
about human-computable one-way functions without having a good
model of human computation.

Nick Hopper and Manuel Blum [6] came up with a very simple
protocol that is plausibly human computable, and is based on the
(very solid) learning-parities-with-noise assumption (LPN). The LPN assumption is essentially

a “scaled down” version of the LWE
assumption with modulus q = 2. The
LPN assumption is equivalent to stating
that it is computationally infeasible to
decode random linear codes over F2.
This is a problem that has been studied
since at least 1968 [2].

Hopper-Blum authentication protocol. The two parties’ shared secret is
a vector k ∈ Zn

2 . Think of n ≈ 4 096 or so.

• Challenge. The challenge is a random vector r ←R Zn
2 .

• Response. The response is the value

a← ⟨k, r⟩+ ϵ ∈ Z2,

where ⟨k, r⟩ = ∑n
i=1 ki · ri ∈ Z2, and ϵ ∈ {0, 1} is a biased coin

that is 1 with probability 1/10.

• Accept/reject. The verifier accepts if a = ⟨k, r⟩ ∈ Z2.

If the verifier runs the protocol 1 000 times and accepts if and only
if the prover (person authenticating) gives the correct answer at least

open questions 7

80% of the time, then the verifier can be pretty sure that they are
talking to the right person.

Is this protocol really human computable? What would a better
protocol look like? And what does it mean for a function to be “hu-
man computable” or not?

Short signatures

A very simple open problem is: Are there digital signature schemes
(under plausible assumptions) in which the signatures are λ bits long
and the best forgery attack runs in time very close to 2λ? We have
signatures from pairings/bilinear maps that have bitlength roughly
2λ that achieve λ-bit security, but getting even shorter signatures
would be very useful. ECDSA signatures are closer to 3λ bits long, or
roughly 384 bits when we are aiming for 128-bit security.

Cryptanalysis

Classical: Better algorithms for factoring Jim and Ron’s talks touched
on one of the simplest open questions cryptography: How hard
is factoring? Is there a polynomial-time algorithm for it? The best
algorithms today for factoring an n-bit number run in time roughly The Õ(·) notation hides log factors in

its argument. That is Õ(f (x)) means
O(f (x) · polylog f (x)).

2Õ(3√n), which is much much better than 2n, but is much worse than
n100, since the exponent grows without bound. It seems unlikely that
2Õ(3√n) is the correct running time for the best factoring algorithm in
any just world, but the tricks we know cannot do better than that.

To get a sense of where this running time comes from: If you take
a random n-bit number, the probability that all of its prime factors
are less than B = 2

√
n is (roughly) 1/B. We call these “B-smooth”

numbers. The index-calculus-type factoring algorithms require find-
ing (roughly) B such smooth numbers.

The most powerful factoring algorithms need to find B = 2Õ(3√n)

numbers whose prime factors are all ≤ B. The expected running time
is then roughly B2 = 22·Õ(3√n), which is as claimed.

Quantum: Faster factoring algorithms To understand this open prob-
lem, we need a tiny bit of background on quantum computation. We
typically model the state of a quantum computer as a “register” that
holds n qubits. (Don’t worry about what a qubit is.) To run a quan-
tum computation, we apply two- or three-input quantum “gates”
(gates as in a circuit) to subsets of the qubits in the registers. The
gates modify the state of the register contents. At the end of the com-
putation, the output is in some subset of the qubits in the register.

There are two especially important complexity measures then for a
quantum computation:

open questions 8

1. Circuit size. How many quantum gates must you apply to the
register before getting the output of the computation?

2. Register size. How large of a register, in qubits, do you need to
run the computation?

Large quantum computers seem extremely hard to build: speaking
optimistically, the best computers today can (maaaaaybe) run certain
computations with hundreds of gates on tens of qubits. So minimiz-
ing the size of a quantum computer required to factor is a neat and
well-motivated open question.

Here is what we know about quantum factoring, from the timeline
of Ragavan and Vaikuntanathan [10]:

• Shor’s algorithm uses a quantum circuit of size O(n2 log n)
and requires a register of O(n log n) qubits.

• Regev recently gave a circuit of size O(n3/2 log n) using
O(n3/2) qubits.

• The most recent work [10] gives a circuit of size O(n3/2 log n)
using O(n log n) qubits.

Is it possible to construct a quantum factoring circuit of near-linear
size using a near-linear number of qubits?

Quantum: Better algorithms for lattice problems A paper last year [4]
proposed a quantum polynomial-time algorithm for the LWE prob-
lem, which we have covered in detail in this course. The paper—and
how long it took to refute it—underscores how little we know about
quantum cryptanalysis. My sense is that precious few people (not
counting people in intelligence agencies) spend any time considering
the quantum hardness of these lattice problems.

Chen’s LWE algorithm turned out to be flawed, but there is still
a very real possibility that someone will come up with a fast quan-
tum algorithm for the problem. The best known algorithms run in
exponential time.

Is there a subexponential-time quantum algorithm for LWE?

Proof systems

Succinct proof systems have been gaining popularity over the last
two decades especially with increasing large scale computations.
There are many important problems in this setting. First, we know
how to generate succinct non-interactive arguments (SNARGs) for
the correctness of a computation.

In class we saw the GKR succinct interactive protocol for bounded
depth computations, and as we mentioned we can apply the Fiat-

open questions 9

Shamir protocol to it, and guarantee soundness under LWE (if we
use a suitable Fiat-Shamir Hash functions). There are other ways of
constructing such SNARGs for computations of unbounded depth.

We also talked about SNARGs for NP, which is a way of taking
any mathematical proof and shrinking it using cryptography. We
have seen a construction that are sound in the Random Oracle Model.
However, we still do not know of a construction from standard as-
sumptions. This is a major open problem in cryptography.

Another philosophical question that I am fascinated by is the ques-
tion of the efficiency of interactive proofs. We know that IP=PSPACE
but in this IP the prover runs in time poly(2S) where S is the space
of the underlying computation. Is this inherent? Can we improve
the prover’s overhead to be polynomial (as in GKR), and obtain a
doubly-efficient version of the IP=PSPACE theorem?

Quantum Cryptography

We didn’t talk much about quantum cryptography in this class. We There was a class this term (6.S895),
devoted entirely to quantum cryptogra-
phy.

did talk about post-quantum cryptography where all the honest par-
ties are honest but where we want security even if the adversary has
quantum power. Quantum cryptography is where the honest par-
ties have quantum power too. There are countless important open
questions in this regime. I would partition them into two buckets:

1. Quantum-mania: All parties have quantum power and they ex-
change quantum bits.

2. Mini-quant: An few parties have quantum power (these parties
can be thought of as IBM, Microsoft, etc.), but most computers are
classical.

For the land of quantum-mania, one of the most fundamental ques-
tion is what are the minimal assumptions needed to do cryptography
in this world? For example, we know that key-exchange can be done
information theoretically. In the classical model of computation, it
is known that the existence of a one-way function is the minimal as-
sumption needed for essentially any cryptographic application that
cannot be realized information theoretically. In the quantum setting,
however, one-way functions appear not to be essential, and the ques-
tion of whether such a minimal primitive exists remains open. This is
an active area of research.

For the land of mini-quant, there are many fundamental questions.
For one, do we have SNARGs for quantum computations? Or even
simpler: Can a quantum computer prove to a classical computer
that a quantum computation was done correctly (non-succinctly)?

open questions 10

Urmila was the first to give a positive answer to this question, by
constructing an interactive argument for all quantum computations
under the LWE assumption. Recently, her protocol was converted
to a succinct one. We mention that without succinctness it is not
clear that we need to rely on any assumption. This gives rise to the
following fundamental question: Is there an interactive proof for
BQP or QMA where the verifier is classical and the prover runs in
quantum polynomial time?

What next?

• Attend seminars. We have a weekly Cryptography and In-
formation Security seminar, a weekly security seminar, and
the quarterly Charles River Crypto Day. All are free to attend
and open to the public. Most of these events appear on the
CSAIL calendar.

• Take classes. Related classes at MIT are 6.858 (Spring) and
6.875 (Fall). Yael is teaching a class on proof systems in the
fall as well—course number TBD. There are many classes at
Harvard relating to privacy, law, cryptography, etc. You can
cross-register for these for free!

• Get involved in research. For undergraduates: UROPs are a
great way to get started, if you haven’t tried them already. If
you have done a great project in this class, you can share it
with your prospective research advisor. The Cryptography
ePrint Archive is a place to get the latest research papers in
cryptography (for free!).

Closing notes

Feel free to email me or Yael any time if you have questions about
cryptography or anything else. We do not always have capacity to
take on UROP/MEng projects, but we’re always happy to brainstorm
about research ideas and chat about whatever else is on your mind.

Have a great summer!

References

[1] Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle
puzzles are optimal–an o(n2)-query attack on any key exchange
from a random oracle. In CRYPTO, 2009.

[2] Elwyn R Berlekamp. Algebraic Coding Theory. 1968.

open questions 11

[3] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret shar-
ing: Improvements and extensions. In CCS, 2016.

[4] Yilei Chen. Quantum algorithms for lattice problems. Cryp-
tology ePrint Archive, Paper 2024/555, 2024. https://eprint.

iacr.org/2024/555.

[5] Zeev Dvir and Sivakanth Gopi. 2-server PIR with subpolyno-
mial communication. Journal of the ACM (JACM), 63(4):1–15,
2016.

[6] Nicholas J Hopper and Manuel Blum. Secure human identifica-
tion protocols. In ASIACRYPT, 2001.

[7] Russell Impagliazzo. A personal view of average-case complex-
ity. In IEEE Conference on Structure in Complexity Theory, pages
134–147. IEEE, 1995.

[8] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient
private information retrieval and fully homomorphic RAM
computation from ring LWE. In STOC, 2023.

[9] Hiroki Okada, Rachel Player, Simon Pohmann, and Christian
Weinert. Towards practical doubly-efficient private information
retrieval. In International Conference on Financial Cryptography and
Data Security, 2024.

[10] Seyoon Ragavan and Vinod Vaikuntanathan. Space-efficient and
noise-robust quantum factoring. 2004.

[11] Mark N. Wegman and J. Lawrence Carter. New hash functions
and their use in authentication and set equality. Journal of com-
puter and system sciences, 22(3):265–279, 1981.

https://eprint.iacr.org/2024/555
https://eprint.iacr.org/2024/555

	One-way functions, PRGs, PRFs, etc.
	Private information retrieval (PIR)
	Fully homomorphic encryption (FHE)
	Identification protocols and signature schemes
	Proof systems
	Quantum Cryptography
	What next?
	Closing notes

