
Oblivious RAM
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 20 (April 23, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Motivation

• Formal definition

Introduction

Our topic today, by popular demand, is oblivious RAM (ORAM).
Oblivious RAM is one of these cryptographic tools that feels like it
should have loads of applications, but has yet to make its way into
wide use. The notion of ORAM is due to Goldre-

ich and Ostrovsky [2].Informally, an ORAM scheme lets a client outsource a set of N
data items to a server while maintaining:

1. Data privacy: The server learns nothing (in a semantic-security
sense) about the data, and

2. Obliviousness: The client can read or write/update the data items
without revealing to the server which items it is accessing.

We will formalize these properties in a moment.
Before we do, notice that the first feature is easy to achieve with

any symmetric-key encryption scheme. The second feature is the one
that requires some work.

Applications

Before diving into what ORAM is, let me sketch a few scenarios in
which we might want to use it.

Outsourced file storage. You want to back up all of the files on your
hard drive to Dropbox. You would like to read and write files with-
out Dropbox learning which files you are reading and writing.

You are the ORAM client; Dropbox is the ORAM server.

oblivious ram 2

Physical attacks. In certain settings, it may be relatively easy for
an attacker to read the contents of your computer’s RAM (e.g., by
snooping on the memory bus) but it might be difficult for the at-
tacker to look inside the CPU. If you run all of your programs using
an ORAM scheme, an attacker controlling the RAM will not learn
anything about your data or data-access pattern.

Your CPU is the ORAM client; the RAM is the ORAM server.

RAM multi-party computation. There is also a nice way to use obliv-
ious RAM to get asymptotically efficient multiparty computation
protocols for RAM programs. I will not say more about this here.

Hardware enclaves. Some modern CPUs support hardware enclaves:
an environment that allows running a user-space process while pre-
venting even kernel code from being able to read the memory of the
process in the enclave. If a process running in an enclave wants to
persist data to a disk, it could use an ORAM scheme to both hide the
data contents and its access pattern.

Signal apparently uses ORAM blog post for this application in its
contact-discovery system.

Why is it important to hide access patterns?

You might think that encrypting user data is enough—why do
we need to hide data-access patterns too? In many applications,
the memory-accesses themselves leak your data. Signal’s contact-
discovery application is an example.

Definition: Oblivious RAM
Elaine Shi has a nice set of notes on
oblivious RAM.We use definitions loosely following Asharov et al. [1].
At the last minute, I decided to simplify
the ORAM definition here. When I
attempt simplification, I end up going
to far 50% of the time and breaking
something by mistake. So I hope that I
did not do that here. But at least even if
it is broken, it is simple. :)

A RAM machine with memory size n consists of a CPU, a small
number of registers, and a size-n external memory. The registers and
memory entries each hold a w-bit “word,” where we always assume
the word size w � log n.

We will also assume that the word size
is greater than the security parameter l.

Let P be a RAM program (e.g., an x86 program). An oblivious
simulation of P is a program eP that preserves the functionality of P,
but whose memory-access pattern “leaks nothing” about memory
accesses that P makes. We can make this notion formal using simula-
tion.

To do so, for a RAM program P, let addrs(P) denote the sequence
of memory operations that P makes during its execution. Each opera-
tion is either a read (R, addr) or a write (W, addr, value).

https://signal.org/blog/building-faster-oram/
https://pathoram.jimdofree.com/app/download/11534798849/AppliedCrypto-ORAM.pdf

oblivious ram 3

Definition 1 (Oblivious RAM). We say that a p.p.t. algorithm O is an
oblivious RAM scheme if it satisfies the following properties:

• Correctness. For all l 2 N and all ram programs P, for eP
O(1l, P) it holds that P() = eP().

• Obliviousness. There exists a p.p.t. simulator Sim such that
for all programs P, the following probability distributions
ensembles are computationally indistinguishable:

�
addrs(O(1l, P))

 •
l=1

c
⇡

�
Sim(1l, 1|addrs(P)|)

 •
l=1.

To unpack the second part here: we are requiring that there exists
an efficient simulator that can produces a transcript of the memory
accesses that P(x) makes. The simulator does not take the program
P as input, only the number of memory accesses that P makes. This
implies that the memory-access pattern of O(1l, P) reveals essentially
no information about the memory accesses that the original program
P makes.

Figure 1: Oblivious RAM

Important caveat: Oblivious RAM—at least as we have defined it
here here—does not guarantee any kind of memory integrity. Neither
component of this definition gives any guarantee when the program
is executed against a RAM that does not behave as an honest RAM
would.

Many applications of ORAM demand integrity as well; it is possi-
ble to boost ORAM to also provide integrity protection using Merkle
trees. If you want to do so with very minimal overhead, you have to
work harder [4].

oblivious ram 4

The following two notions of efficiency are the most important
ones for us:

Definition 2 (ORAM efficiency metrics). Let O be an efficient algo-
rithm such that for all RAM programs P using at most n words of
memory, eP = O(P) obliviously simulates P. We say that O is an
oblivious RAM scheme with :

• memory overhead m(n) if O(P) uses m(n) · n words of memory,

• computational overhead c(n) if, O(P) makes c(n) · |addrs(P)|
memory accesses.

Simplifying assumption: The data is encrypted. When we discuss
ORAM schemes from here on, we implicitly assume that the scheme
encrypts each stored word of memory using a symmetric-encryption
scheme, whose key is stored in a register. This only uses one ex-
tra register and does not change the number of memory accesses
needed. With this assumption, we only need to worry about access-
pattern leakage—not data leakage.

Oblivious RAM versus Private Information Retrieval (PIR)

Both oblivious RAM and PIR involve hiding a client’s access patterns
from a potential adversarial server. It is important to understand how
they differ.

ORAM PIR

Server’s memory changes with each query DB is public, static
One client, one server Many clients talk to one server
Supports reads and writes Supports only private reads
polylog(n) time per op (memory size n) W(n) time per op (database size n)
Can build from PRFs Requires public-key crypto in single-server setting

Sanity checks: Trivial solutions

CPU with a gigantic number of registers. Since reads and writes to
registers are not visible to the RAM, if the CPU has n registers, it
is possible to obliviously simulate any program that uses at most n
memory words with zero memory and compute overhead: just store
all of the data in registers!

Normally, we think of the number of registers as being constant
or maybe polylogarithmic in the memory size, which rules out this
trivial solution.

oblivious ram 5

Read all of memory to implement each access.

Claim. There is an oblivious RAM scheme with:
• memory overhead O(1) and

• computational overhead O(n).

Proof sketch. The idea is to run the program P as usual except that,
whenever P asks to read/write location i⇤ 2 [n] in memory, read all n
words of memory, one at a time, and write each back in place. When
we reach the index i⇤ we care about, we can modify the contents or
store it to a register.

Correctness is immediate.
For security, notice that the memory access pattern of O(P) de-

pends only on the number of memory accesses that P makes.

This trivial scheme is terrible in terms of performance, but it at
least shows us that oblivious simulation is possible!

Goal: Few registers and little overhead

How good can an ORAM scheme be?

• Larsen and Nielsen (2018) [3] showed that even with ne regis-
ters, the total CPU-RAM communication must increase by a
W(log n) factor on memory size n.

• Path ORAM (2012) is a simple scheme that achieves this
bound when the word size is W(log2 n) [5].

• OptORAMa [1] (2020) is a complicated scheme that gets rid
of the word-size restriction.

References

[1] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak,
Enoch Peserico, and Elaine Shi. OptORAMa: optimal oblivious
RAM. In EUROCRYPT, 2020.

[2] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious RAMs. Journal of the ACM (JACM),
43(3):431–473, 1996.

[3] Kasper Green Larsen and Jesper Buus Nielsen. Yes, there is an
oblivious RAM lower bound! In CRYPTO, 2018.

[4] Surya Mathialagan and Neekon Vafa. MacORAMa: Optimal
oblivious RAM with integrity. In CRYPTO, 2023.

oblivious ram 6

[5] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H Hubert Chan,
Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas De-
vadas. Path ORAM: an extremely simple oblivious RAM proto-
col. Journal of the ACM (JACM), 65(4):1–26, 2018.

t"R0RA
"

(Goldmich & Ostrovsky
'

92)

Simple t clean
. We will see a more efficient

construction neat class.

Client storage : Old words (PRF Ky)
serve storage : ht Olin) words

Off) RAM accesses per op .

,
amortized

#

key idea : Suppose RAM holds logical man
contents permuted according to Sone

it that only client knows
.

⇒
"

Read - once ORAM
"

. . . any sequence of ops to

distinct adds is indist.
RAM

-
'

Tik)
-

d

Tik)
-

-I

÷:
=

Yiladdr) -- physical odor i

t
"

(physical addrrlsaddr
-

it
-

Construction

* Initialize memory contents with encryption
of O 's (using seen sea Cnc scheme)
n data blocks

,
rn dummy blocks

,

rn stash blocks

* While true :

1
. Shuffle horn data + dummy blocks using
fresh random perm IT:[n - rn] → Cute] .

2
.

Process Tn ops :

- Read t write back entire stash
- If desired element is in stash

→ read one dummy block
- Else
→ read data block

- Read+ write back entire stash

3
.

Return all words to their starting location
.

"" ÷÷:

Details

step 1 : Sorting .
* Use PRP to assign tag Thi) to addri

.

* Run a sorting network to sort by tags in

Olnlsjn) Rsm access

step 2 : Access

* Read stash : rn resin accesses

* Read dataldmy Clem : l
' '

* Read stash : rn
"

step 3 : Un sort
, again using Butcher

Qnlg2n) RAM accesses

total cost : Olney 's) RAM accesses

per rn logical ops

⇒ Amortized Ocrnlsjn) cost per access.

So
,
we saw that 0hAM

is possible w/ Sym .

- key
tools w/ Otr login)
overhead per access .

Next time : a more efficient
scheme

.

Tw-Based_0RAM
Developed in a long series of really nice
papers . Relatively Jeff?Chan

, Stefano, Li 12011)
* wook after

We will see
"

Simple 0hAM
" of Chuy & Pass (2013)

Client storage : Olly-n)
RAM storage : Olntzn)

comp overhead : O(by"n) RN to RAM per logical op .
Remember: More recent ORAMS give improvements

in theory & practice . But this is simple .

" "

Plan : 1. Construct a bad ORAM in which
client stores n/2 blocks instead of h.
↳ OUR comp overhead

2
. Recursively store the % blocks in another
ORAM . .

. recourse all the way down

Overton : Olly 're) . login
w
b/c of recursion .

Only need to explain step 1 .

Fiona
-

"t: o÷÷÷÷÷:÷÷÷¥
ptngfyji.at#tftEa.aIddarisstTodsi+.:Q

Ortmoperations
- Read & write are essentially the sane.
- Let's look at a read

. . . .

Readladotr
1

.

Look up leaf l of adder in position map .

2
.

Read contents of all buckets on path
to leaf l.

3
.

Pick a new random leaf e'IG] ,
Poshdapcaddr] ← e :

4
.
Add (adds

,
data) . - encrypted to root bucket

.

↳If no space , fail .

5
.

Pick a leaf LEG) , walk down path
from root to l

.

↳
" fhsh " blocks down towards l as

far as they can go while still
maintaining The Invariant.↳If no space, fail .

Thats it "! So simple ?
Er writes

, just update non contents before puttingdata back into tree root
.

Properties
Correctness : As long as there's no overflow, ✓

all read(write ops return right answer.

Security : On each MW
,

client reads two ✓
random paths from root to leaves .

Overhead :
- nth client storage
- Buckets have size ligan , need to
read trite Qbs) of them Olly're) .
- server stores Oln) buckets ⇒ Olnhjn) .

To show there's no overflow .

- Bound leaf onestou : Chernoff bound .

- Bound node overflow : Slightly more involved
,

but still not too bad .

↳ see Pass paper.

Summarizing
- ORAM lets a client outsource
its storage while hiding access

patterns .
- Best constructions have logarithmicoverhead (in # of ram accesses) &
have varying levels of practicality .
↳

Not sure whether any deployed systemshave used ORA Ms
. . .

Can sporulate on why not.

	Outline
	Introduction
	Definition: Oblivious RAM
	Oblivious RAM versus Private Information Retrieval (PIR)
	Sanity checks: Trivial solutions

