
The GKR Protocol and SNARGs for NP
Notes by Yael Kalai

MIT - 6.5610
Lecture 19 (April 14, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• The GKR Protocol

• Succinct Interactive Proofs for NP

• SNARGs for NP

The GKR protocol [1] is a doubly efficient interactive proof that
achieves the following guarantees.

Theorem 1. For any circuit C of depth D and size S (that is log-space
uniform) there exists a doubly efficient interactive proof such that C is log-space uniform if there exists a

log-space machine that takes as input
the description of three wires and
outputs 1 iff there wires are connected
via an ADD gate or via a MULT gate.

• The number of rounds is D · polylog(S).

• The communication complexity is D · polylog(S).

• The verifier’s runtime is Õ(n) + D · polylog(S) where n is the
input length (assuming the circuit is log-space uniform). Moreover,
if the verifier has access to the multilinear extension of the input
then it runs in time D · polylog(S) and accesses the oracle in a
single point!

• The prover’s runtime is poly(S).

The protocol uses the notion of a multilinear extension, defined
last class. Recall that the multilinear extension (MLE) of any function
f : {0, 1}m → {0, 1}, with respect to a finite field F, is the (unique) One can think of f as an arbitrary

vector of bits of length 2m.multilinear function f̃ : Fm → F that agrees with f on all inputs in
the domain {0, 1}m; i.e., ∀(b1, . . . , bm) ∈ {0, 1}m,

f̃ (b1, . . . , bm) = f (b1, . . . , bm),

or more concisely f̃ |{0,1}m≡ f . Notice that the domain of f̃ is Fm, a
superset of {0, 1}m, hence the name “extension”.



the gkr protocol and snargs for np 2

Theorem 2. Let f : {0, 1}m → {0, 1} be any function (i.e., an arbitrary
sequence of 2m bits) and let F be a (finite) field. Then there exists a unique
multilinear polynomial f̃ : Fm → F s.t. f̃ |{0,1}m≡ f Moreover,

f̃ (t1, . . . , tm) = ∑
b1,...,bm

f (b1, . . . , bm) · β̃(t1, . . . , tm, b1, . . . , bm),

where β̃ is the unique multilinear function that for every x, y ∈ {0, 1}m,

β̃(x, y) =

1 x = y

0 x ̸= y

The GKR protocol

Fix boolean circuit C : {0, 1}n → {0, 1} of size (number of gates) S
and depth D. The GKR protocol is an interactive proof for the fact
that C(x) = 1. We assume that the verifier has a succinct description
of C. Formally, we assume that C is log-space uniform i.e. it can be
generated by some log-space Turing Machine M, and we assume that
the verifier has a description of M. Assume without loss of generality
that C is layered which means that each gate belongs to a layer, and
each gate in layer i is connected by neighbors only in layer i + 1. Let
layer 0 denotes the output layer and D denotes the input layer. One can always layer a circuit by

adding dummy intermediate gates.
This can be done while increasing the
depth to depth at most D2.

The GKR protocol consists of D-subprotocols, where the i’th sub-
protocol reduces a claim about the value of a point in the MLE of
layer i − 1 to a claim about the value of a point in the MLE of layer
i. It has the guarantee that if the value corresponding to layer i − 1
was incorrect then with high probability, the value corresponding to
layer i is also incorrect. Eventually, it will be reduced to a claim about
the value of a point in the MLE of the input layer (layer D), which the
verifier can compute on its own.

Detailed description of the protocol

Step 1: Arithmetize C. Convert C to a layered arithmetic circuit (over
GF[2]) with fan-in 2. Arithmetic circuit (over GF[2]) means that it
consists only of gates of the form ADD and MULT (where addition
and multiplication are done modulo 2). We can convert any Boolean
circuit, with gates ∧ and ¬, into an arithmetic circuit, by converting
a gate ∧ into a gate MULT, and converting a gate ¬ into a gate ADD

where we add a constant 1 as an input to the gate.
We assume for simplicity, and without loss of generality, that the

number of wires in each layer is the same, and we abuse notation and
denote it by S.



the gkr protocol and snargs for np 3

Step 2: The prover computes the values of all wires in every layer
of the circuit. Let m = log S. For layer i, define the function Vi :
{0, 1}m → {0, 1}, where Vi(b1, . . . , bm) is the value of the wire in layer
i, whose binary representation is (b1, . . . , bm. Let Ṽi : Fm → F be its
multilinear extension (MLE).

The Protocol: The protocol consists with D “reduction” protocols,
where each reduction protocol reduces a claim of the form Ṽi(zi) = vi

about layer i to a claim of the form Ṽi+1(zi+1) = vi+1 about about
layer i + 1. We start with the output layer where the prover claims Actually, the reduction protocol will

reduce checking two such claims about
layer i to two such claims about layer
i + 1.

that Ṽ0(z0) = v0 = 1 where z0 ∈ {0, 1}m is the label of the only
non-dummy gate in layer 0 that holds the output of the circuit. At
the end of these D reduction protocols we will be left with a claim of
the form ṼD(zD) = vD. The verifier can check this on its own since it
knows the input.

The reduction protocol

For every i ∈ [D] we define two functions ADDi,MULTi : ({0, 1}m)3 →
{0, 1} as follows:

ADDi(p, w1, w2) =

1 gate p in layer i is an ADD gate connecting w1 and w2 in layer i + 1

0 Otherwise

MULTi is defined similarly with ADD replaced with MULT in the
definition. Let

ÃDDi, M̃ULTi : F3m → F

be the MLEs of ADDi and MULTi, respectively.
We can expand out the MLE definition and rewrite the claim

Ṽi(zi) = vi as
vi = Ṽi(zi) = ∑

p∈{0,1}m
Vi(p)β̃(p, zi)

Then we can further express Vi(p) as combination of ÃDDi, M̃ULTi:

vi = ∑
p∈{0,1}m

∑
w1,w2∈{0,1}m

[
ÃDDi(p, w1, w2)(Ṽi+1(w1) + Ṽi+1(w2))+

M̃ULTi(p, w1, w2)(Ṽi+1(w1) · Ṽi+1(w2))
]

β̃(p, zi)

Denote the polynomial inside the sum by

f (p, w1, w2) =
[
ÃDDi(p, w1, w2)(Ṽi+1(w1) + Ṽi+1(w2))+

M̃ULTi(p, w1, w2)(Ṽi+1(w1) · Ṽi+1(w2))
]

β̃(p, zi)



the gkr protocol and snargs for np 4

In the i’th subprotocol, the prover and verifier run the Sumcheck
protocol for

vi = ∑
p,w1,w2∈Hm

f (p, w1, w2).

This reduces the problem of verifying that vi = Ṽi(zi) to checking
that f (z0, z1, z2) = t for some t ∈ F and for random z0, z1, z2 ∈ Fm

chosen by the verifier in the Sumcheck protocol. By definition of f ,
this reduces to checking that

t =
[
ÃDDi(z0, z1, z2)(Ṽi+1(z1) + Ṽi+1(z2))+

M̃ULTi(z0, z1, z2)(Ṽi+1(z1) · Ṽi+1(z2))
]

β̃(z0, zi)

We assume for now that the verifier can compute on its own ÃDDi

and M̃ULTi. This is precisely where we use the log-space uniformity
condition of the underlying circuit C.

So we reduced checking the value vi in layer i to checking the
value of two elements (z1, z2) in round i + 1. It seems like if we con-
tinue in this way the number of elements we will need to check will
grow exponentially! However, surprisingly this is not the case! We
can reduce checking two elements in round i + 1 to checking two
elements in round i + 2.

The idea is to run two Sumcheck protocols (one for each element)
but where the verifier uses the same randomness in both these Sum-
check protocols! This will convert checking two elements in round i
to checking two elements in round i + 1.

Overcoming the Low-Depth Restriction

We can use the GKR blueprint to construct doubly efficient protocols
for any computation where the verifier’s runtime and the number of
rounds do not grow with the depth of the computation! Rather they
grow only poly-logarithmically with the size. The basic idea is to
“flatten” the circuit. Namely, suppose the prover wishes to prove to
the verifier that C(x) = y where C is of size S. The idea is for the Assume that S is the number of wires

in C.prover and verifier to consider a new shallow circuit C′ that takes as
input an S-bit string, which corresponds to the values of all the wires
of C, and checks that all the gates of C are satisfied. Importantly, note
that C′ is very shallow and is of depth O(log S). So, the idea is to run
the GKR protocol on the shallow circuit C′.

The problem is that the verifier does not know the input to C′

since he cannot compute all the gates of C on its own – this is pre-
cisely the work we are trying to offload to the prover! As a result,
the verifier cannot verify the GKR protocol, since to verify it the ver-



the gkr protocol and snargs for np 5

ifier needs to compute on its own a random point in the low-degree
extension of the input to C′.

Cryptography to the rescue

To overcome this problem we have the prover “commit” to the mul-
tilinear extension Ṽ0 of the input to C′, using a special commitment
which is referred to as a “polynomial commitment.” Then the prover
and verifier run the GKR protocol on the flattened circuit C′, at the
end at which the verifier needs to check the validity of Ṽ0(z0) = v0.
This is done by the prover “opening” the commitment at the point z0.

A more detailed description follows.

1. The prover does the following:

(a) Compute the string V0 which corresponds to all the wires in
C(x).

(b) Compute Ṽ0 which is the multilinear extension of V0.

(c) Send to the verifier a succinct “polynomial commitment”of Ṽ0 A polynomial commitment is a succinct
and binding commitment of Ṽ0 that
allows the prover to ”open” to any
evaluation of Ṽ0 succinctly.

2. The prover and verifier run the interactive GKR protocol w.r.t. C′

on input V0.

To verify this protocol the verifier needs to check a claim of the
form Ṽ0(z) = t for given z ∈ Fm and t ∈ F.

3. The prover will “open” the polynomial commitment of Ṽ0 at the
point z.

We will not elaborate on how polynomial commitments are con-
structed.

Succinct Interactive Proofs for NP

Note that the above protocol gives a succinct interactive proof for NP.

1. First the prover sends a polynomial commitment to the multilinear
extension of the NP witness w, which is denoted by W̃ : Fm → F.

2. Run the GKR protocol with respect to the verification circuit that
has the input x hardwired, and on input w outputs 1 if and only if
w is a valid witness corresponding to x.

To verify the GKR interactive proof the verifier needs to check the
value of W̃ at a single point z ∈ Fm.

3. The prover will send an opening to the polynomial commitment at
point z.



the gkr protocol and snargs for np 6

Succinct Non-Interactive Proofs (SNARGs) for NP

Finally, we note that since the GKR protocol is a public-coin proto-
col (i.e., a protocol where all the verifier’s messages are random bits
(corresponding to random field elements), we can eliminate interac-
tion from these protocols by using the Fiat-Shamir paradigm! As a Recall that this paradigm replaces the

random messages of the verifier with
the hash value of the transcript so far.

result we are able to convert any NP witness w into a succinct crypto-
graphic witness π, where as opposed to w, a succinct witness π exists
even for instances x that are not in the language, but are hard to find
(under some hardness assumption on the Fiat-Shamir hash function
and assuming the polynomial commitments are indeed binding).

References

[1] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.
Delegating computation: interactive proofs for muggles. In Cyn-
thia Dwork, editor, Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 113–122. ACM, 2008.


	Outline
	The GKR protocol
	Detailed description of the protocol
	The reduction protocol
	Overcoming the Low-Depth Restriction
	Cryptography to the rescue
	Succinct Interactive Proofs for NP
	Succinct Non-Interactive Proofs (SNARGs) for NP

