
The Power of Interactive Proof Systems
Notes by Yael Kalai

MIT - 6.5610
Lecture 17 (April 7, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Motivation

• Interactive proofs (Recap)

• Sumcheck protocol

Motivation

Suppose we store our data on a (possibly untrusted) platform and
then request the platform to perform computations on our data.
Recall that FHE allows us to carry out this task while ensuring the
secrecy of our data. We now ask how do we ensure the integrity of
the result? Specifically, how do we know that indeed the platform is
doing the instructed computation? In other words, can we efficiently
verify that a computation was done correctly? Namely, is there a succinct
and efficiently verifiable proof that we can append to the output of a
computation attesting to the fact that this output is indeed correct?
This is the topic of the next three lectures.

Following our convention that “efficient” means polynomial time,
we ask which computations have proofs of correctness that can be
verified in polynomial time? This is precisely the definition of the
complexity class NP, which is the set of all languages that have mem-
bership proofs (aka witnesses) that can be checked by a polynomial-
time verifier algorithm, denoted V .

We would like proofs of correctness for languages outside of NP!
Specifically, we would like to have a proof of correctness for time T
computations that can be verified in time << T (say time Tϵ or
even polylog(T)). Unfortunately, we do not believe that every T-
computable language has a proof (or a “witness”) of size << T.

As you learned by now, cryptography is an art of overcoming
such barriers. We overcome this barrier by considering interactive

the power of interactive proof systems 2

proofs (as opposed to classical proofs, which are deterministic and
non-interactive) and by making use of some cryptographic magic!

Interactive Proofs (Recap)

Proof systems have been studied by mathematicians for thousands
of years, starting from Euclid (300 BCE). Yet, until recently, all proof
systems were of a somewhat similar form which is simply a list of
formulas that follow from a set of inference rules and axioms. This
changed in the mid eighties when Goldwasser, Micali and Rack-
off defined the notion of a zero-knowledge proof [2] (which we talked
about earlier in the semester). They realized that zero-knowledge
cannot be achieved using classical proofs, and to bypass this barrier
they completely changed the way we think about proofs.

They defined a new notion called interactive proofs. Such proofs
extend upon the classical notion of proofs in two ways. First, rather
than solely considering a verifier algorithm V , we instead think of the
proof as arising from interaction between the verifier V and a prover
algorithm P . Second, we allow the verifier be randomized and allow a
small (negligible) probability of error.

Remark. In many of our interactive proofs the verifer simply sends its
random coins and does not have any private randomness. Such inter-
active proofs are called public-coin interactive proofs. All the interac-
tive proofs that we will see in the next three lectures are public-coin
ones. Public-coin protocols are of great interest because as we will
see, we can later use cryptography to eliminate interaction from such
protocols using the Fiat-Shamir transform (coming up, stay tuned!).

Both the verifier and prover algorithms will have access to the
input of the problem instance. The two algorithms will exchange
messages sequentially, computing the next message in the sequence
as a function of the messages up to that point. Ultimately, the ver-
ifier algorithm will decide whether to accept or reject the problem
instance. We can think of the interaction metaphorically as the prover
trying to “convince” the verifier of the problem instance being true,
and of the verifier trying to verify that the prover is not “dishonest”
or “cheating” and misleading the verifier into accepting a false state-
ment.

In the next three lectures, we will learn about the power of inter-
active proofs, and their impact on how proofs are designed today.
Jumping ahead, we will show how to use interactive proofs, together
with cryptographic magic, to construct “succinct proofs.” Specifically,
we will show how given a Turing machine M, an input x and a time-
bound T, one can compute the output y = M(x) together with a

the power of interactive proof systems 3

“succinct proof” π that certifies that indeed M on input x outputs y
within T steps. More generally, we will show how to convert a long
proof w that certifies the correctness of a statement x ∈ L into a
“succinct proof” π that certify its correctness. Think of L as an NP language, where

every x ∈ L has a polynomial size
witness w. We will see how to use cryp-
tography to shrink w into a “succinct
proof” π.

We start by recalling the formal definition of an interactive proof.

Definition

Definition 1 (Interactive Proof system (IP)). An interactive proof
system for a language L consists of an interactive PPT verifier algo-
rithm V and an interactive (possibly inefficient) prover P algorithm,
which exchange a series of messages, where we denote the verifier’s
messages by r1, . . . , rk and the provers messages by m1, . . . , mk, where
mi = P(x, r1, m1, . . . , ri−1, mi−1, ri), and likewise for V . Denote by Notably, the verifier’s computations

may also depend upon private random
bits not revealed to the prover, though
we will consider only public-coin inter-
active proofs, and hence the notation of
the verifier’s message as r1, . . . , rk .

(P ,V(r))(x) = 1 the event that the verifier V , with private random-
ness r, accepts the interactive proof after communicating with the
prover P on the joint input x and assuming V has randomness r. The
following two properties are required to hold:

1. Completeness: ∀x ∈ L,

Pr[(P, V(r))(x) = 1] ≥ 2
3

2. Soundness: ∀x /∈ L and ∀ (malicious and possibly all powerful) P∗,

Pr[(P∗, V(r))(x) = 1] ≤ 1
3

.

Remark. These numbers (2
3 and 1

3) are arbitrary. By repeating the
interactive proof λ times and accepting if and only if at least λ

2 are ac-
cepting we can get completeness 1− negl(λ) and soundness negl(λ).
This follows from the Chernoff bound, which is a concentration
bound that says that if X1, . . . , Xλ are independent and identically
distributed Bernouli random variables such that Pr[Xi = 1] = p then
Pr[| 1λ ∑i∈λ Xi − p| > δ] ≤ 2−O(δ2·p·λ). See this for information about the

Chernoff bound.The class IP is the set of all languages L that have such an in-
teractive proof. Note that NP ⊆ IP but IP may contain additional
languages. In a celebrated result, Shamir [3] gave a characterization
of the class IP by proving that IP = PSPACE, which means that and
every language L in PSPACE has an interactive proof and every lan-
guage L that has an interactive proof is in PSPACE (the latter is quite
straightforward, but the former is highly non-trivial).

Sumcheck Protocol

We start by demonstrating the power of interactive proofs via the
Sumcheck protocol, which is an interactive proof for a statement

https://en.wikipedia.org/wiki/Chernoff_bound

the power of interactive proof systems 4

that we do not know how to prove succinctly using a classical proof.
Intuitively, the Sumcheck protocol proves the value of the sum of a
multivariate polynomial on exponentially many values. Specifically,
let F be a finite field. One can think of F = GF[p] which consists of
the elements {0, 1, . . . , p− 1} where addition and multiplication are
modulo p.

Definition 2 (Sumcheck Problem). Given a polynomial f : Fm → F of
degree ≤ d in each variable and a fixed set H ⊆ F, compute Often we consider the special case

where H = {0, 1}.
β = ∑

h1,...,hm∈H
f (h1, . . . , hm).

Assuming that the verifier has oracle access to f , we will exhibit
an interactive proof for the Sumcheck problem. While this problem
seems very specific (and possibly not interesting) at first, it turns
out that this is an important building block in many of our succinct
proofs. In particular, it is the main building block in Shamir’s cele-
brated IP = PSPACE result [3], and is the main building block in the
GKR protocol [1] which we will learn about in the next lecture.

The Sumcheck protocol proceeds as follows:

1. The prover computes and sends

g1(x) = ∑
h2,...,hm∈H

f (x, h2, . . . , hm).

This is a unvariate degree ≤ d polynomial where the first variable
to f is a free variable.

2. The verifier checks that g1(x) is a univariate polynomial of degree
≤ d and that ∑h1∈H g1(h1) = β. (Reject if either check fails.)

3. The verifier sends a uniformly sampled t1 ←R F.

4. The prover sends

g2(x) = ∑
h3,...,hm∈H

f (t1, x, h3, . . . , hm).

This is again a univariate degree ≤ d polynomial, where the first
variable of f has been fixed and the second variable is a free vari-
able.

5. The verifier checks that g2(x) is degree ≤ d and that ∑h2∈H g2(h2) =

g1(t1).

6. The verifier sends a uniformly sampled t2 ←R F.

7. The prover replies with

g3(x) = ∑
h4,...,hm∈H

f (t1, t2, x, h4, . . . , hm).

the power of interactive proof systems 5

8. The verifier checks that g3(x) is degree ≤ d and that ∑h3∈H g3(h3) =

g2(t2).

9. Repeat this procedure on all other variables. The final check will
be as follows:

10. The prover sends gm(x) = f (t1, t2, . . . , tm−1, x).

11. The verifier samples a uniform tm ←R F and checks that gm(tm) =

f (t1, t2, . . . , tm) using its oracle access to f . It Accepts if and only if
all the checks have passed.

Analysis of the Sumcheck protocol

The completeness of this protocol is straightforward so we will fo-
cus on soundness. We will not give a formal proof, rather will give a
high-level idea for why this protocol is sound. The soundness anal-
ysis is “round-by-round". Suppose that the instance is false. Namely
suppose the instance is f : Fm → F of degree ≤ d in each variable, a
set H ⊂ F and an element β ∈ F such that

∑
h1,...,hm∈H

f (h1, . . . , hm) ̸= β.

Fix any cheating prover P∗ that tries convince the verifier to accept
this false statement. We argue that for each round i, if we start with a
false claim of the form

g∗i−1(ti−1) = ∑
hi ,...,hm∈H

f (t1, . . . , ti−1hi, . . . , hm) (1)

(where g∗0 = β), then the next round claim, which is of the form

g∗i (ti) = ∑
hi+1,...,hm∈H

f (t1, . . . , ti, hi+1, . . . , hm), (2)

is also false with with probability ≥ 1− d
|F| (assuming the verifier

does not reject g∗i (·)). Thus, by a union bound, at the end of the
Sumcheck protocol the verifier will reject P∗ with probability ≥ 1−
dm
|F| . So we get “good” soundness if |F| >> dm. To see why the
round-by-round soundness holds note that if g∗i−1(ti−1) is false then
g∗i must also be false or else the verifier will reject it. This is the case
since the verifier checks that

∑
h∈H

g∗i (h) = g∗i−1(ti−1).

If g∗i is false and is of degree d then it agrees with the true polyno-
mial on at most d points, and thus g∗i (t) on a random t ←R F remains
incorrect with probability 1− d

|F| .

the power of interactive proof systems 6

Communication complexity. The protocol has m rounds of commu-
nication, one for each variable of f . In each round, the prover sends
one degree-d polynomial, which is represented by d field elements;
and the verifier sends one field element ti. Therefore the communica-
tion complexity is O(dm log |F|).
Runtime. In each of the m rounds, the verifier evaluates a degree-d
polynomial on |H| points; so the verifier runtime is O(m · |H| · d ·
polylog |F|). The prover runs in time O(m · |H|m · Tf), where Tf

denotes the time to compute f .

Remark. The Sum-Check protocol has the desirable property that the
verifier only sends uniformly sampled field elements in each round
(each field element constitutes log |F| random bits), namely it is a
public-coin protocol.

Why do we care about the Sumcheck protocol?

Beyond being a proof of concept that interactive proofs are power-
ful, the Sumcheck protocol is extremely important in the design of
succinct proof systems. Indeed, the Sumcheck protocol was used
by Shamir [4] to construct an interactive proof for any language in
PSPACE. We will not show Shamir’s protocol, rather we will show an
alternative protocol (the GKR protocol [1]) that has efficiency advan-
tages and is conceptually simpler. The main drawback of Shamir’s
protocol is that to prove the correctness of a time T space-S computa-
tion, the runtime of the prover is ≥ 2S·logS, which may be exponential
in T. The runtime of the verifier is proportional to S. This raises the
following fundamental question:

Is proving necessarily harder than computing?

Doubly Efficient Interactive Proofs

So far we placed no restriction on the prover’s runtime, and restricted
only the verifier’s runtime. Indeed, when interactive proofs were
original defined they referred to the prover as Merlin (an all powerful
wizard). In reality, however, we do care about the computational
power of the prover. Of course, we still need to allow the prover more
computational power than the verifier, as otherwise the prover is not
helpful.

Definition 3 (Doubly-Efficient Interactive Proof (DE-IP)). A doubly-
efficient interactive proof for a language L ∈ DTIME(T(n)) is an
interactive proof such that:

1. The honest prover’s runtime is poly(T). In practice it is desirable that the
prover’s runtime is O(T).

the power of interactive proof systems 7

2. The verifier’s runtime is much less, ideally polylog(T) + Õ(n),
where Õ omits polylog(n) factors.

We will show how to use the Sumcheck protocol to construct a
doubly efficient interactive proof for every bounded depth computa-
tion.

Theorem 4. For any circuit C of depth D and size S (that is log-space
uniform) there exists a doubly efficient interactive proof such that We will explain what the log-space

uniformity condition is when we
describe the GKR protocol• The number of rounds is D · polylog(S).

• The communication complexity is D · polylog(S).

• The verifier’s runtime is O(n) + D · polylog(S) where n is the
input length (assuming the circuit is log-space uniform)

• The prover’s runtime is poly(S).

The doubly efficient interactive proof that achieves this theorem
is called the GKR protocol [1]. The only ingredient used in the GKR
protocol is the Sumcheck protocol!

References

[1] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.
Delegating computation: interactive proofs for muggles. In Cyn-
thia Dwork, editor, Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 113–122. ACM, 2008.

[2] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems (extended abstract).
In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA, pages 291–304. ACM, 1985.

[3] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, 1979.

[4] Adi Shamir. Ip=pspace. In 31st Annual Symposium on Foundations
of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990,
Volume I, pages 11–15. IEEE Computer Society, 1990.

	Outline
	Motivation
	Interactive Proofs (Recap)
	Definition
	Sumcheck Protocol
	Analysis of the Sumcheck protocol
	Why do we care about the Sumcheck protocol?
	Doubly Efficient Interactive Proofs

