
Applications of MPC
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 14 (March 19, 2025)

Warning: This document is a rough draft, so it may contain

bugs. Please feel free to email me with corrections.

Outline

• Background: MPC in practice

• Client-server model

• Private aggregation

• Security against malicious clients

Introduction

In the last lecture, we discussed the BGW protocol for secure mul-

tiparty computation (MPC). The BGW protocol is powerful and

flexible: it gives a secure multiparty protocol for computing every
efficiently computable function.

Today, we will shift our focus to applications of MPC protocols.

The questions we will consider are:

• What functions do companies/businesses today actually

want to compute in a multiparty fashion?

• What are the limitations of MPC protocols that make them

hard to use in practice?

• How do large-scale deployments of MPC technology get

around these barriers?

Note on threat model: When you see a practical application of MPC

technology it is worth thinking carefully about what types of attack

the system can and cannot defend against.

As one concrete example, MPC technology does not by nature

give any protection against software bugs: in most implementations

of n-party MPC protocols, all n parties run exactly the same MPC

software. So an attacker that finds an over-the-network-exploitable

applications of mpc 2

bug in one party’s code can compromise all n parties in one go—

compromising n machines in this case almost as easy as compromis-

ing one.

What MPC protocols can help with is local compromise: if two

companies run an MPC, an MPC can protect one company from

learning more than it should about the other’s data.

Applications of MPC

Let us start by discussing applications of MPC in deployed systems

today. As far as I know, there are three major applications of MPC

today:

Application: Custody of cryptocurrency secrets (many blockchain compa-
nies). Say that you run an organization that holds cryptocurrency

assets. There is a secret signing key—or often, many keys—associated

with these assets. Anyone holding the secret key can authorize trans-

actions to transfer these assets to other accounts.

Given that the key could be worth millions of dollars, you may not

trust any one employee to hold the secret key. Even if you had such

a trustworthy employee, you not want to give that employee the sole

responsibility of safeguarding the key. (You can think about why that

might be.)

So, a common way to manage secrets is to split the signing key

using a secret-sharing scheme, and to have different employees man-

age each key share. Whenever the organization wants to authorize

a transaction, the employees jointly run a computation to generate a

signature on the transaction.

Rather than using BGW or some other general-purpose MPC

protocol, most companies implementing these signing protocols use

special-purpose “threshold signing” protocols. These are often more

complicated and less elegant than BGW, but they are much much

faster.

There are scores of companies offering this “MPC wallet” service

to enterprise customers.

Attackers still manage to compromise MPC wallets; one reason is,

as I mentioned above, MPC does not protect against software bugs.

The threshold-signing schemes that many wallet systems implement

are quite subtle, complicated, and easy to get wrong. So it is no sur-

prise that bugs abound.

Application: Private JOIN for ad attribution (Google, Meta). Google and

Meta both apparently use MPC for “conversion measurement” in

online ads. In that setting, Google (for example), holds a list of users

applications of mpc 3

to whom it showed a BMW ad, e.g., listed by phone number. BMW,

holds a list of users who bought a car, also with the purchaser’s

phone number. The two parties want to know: how many people

who saw the BMW ad bought a car?

At the same time:

• Google wants to reveal as little as possible about its ad data

to BMW and

• BMW wants to reveal as little as possible about its customer

data to Google.

Apparently—and I say apparently because this is very difficult for

me to verify—Google and Meta use MPC to solve this problem.

Application: Private aggregation (Apple, Google, Mozilla, etc.). The final

application, “private aggregation,” is one that is near and dear to my

heart, since I have been working on these systems for many years

now.

In this application, a company has millions of clients, where each

client i holds a value xi. The company wants to compute some func-

tion f (x1, x2, . . .), over all of the xis, without learning anything more

about any individual value xi.

This problem comes up in private-telemetry applications. For

example, Apple wants to know what things iPhone users usually

photograph in Paris. (Apple uses this data to produce “memories”

reels in the Photos app.)

Apple, Mozilla, and other companies use a certain type of MPC

protocol to solve this type of private-telemetry problem.

Concrete efficiency of multiparty computation

So far, we have looked at secure multiparty computation from a

theoretical perspective. In the BGW protocol, for example:

1. we model a computation as an arithmetic circuit (i.e., a circuit with

+ and ⇥ gates modulo p) and

2. we treat all parties as having point-to-point secret and authenti-

cated communication channels.

In practice, each of these two modeling features can be problem-

atic:

1. Many computations do not naturally have “nice” representations

as arithmetic circuits. For example, a simple RAM program (e.g., a

Python script) can compile into an arithmetic circuit with trillions

of gates.

applications of mpc 4

In the BGW protocol, the communication cost scales linearly with

the number of gates in the circuit (number of multiplication gates,

to be precise). The number of rounds of communication scales

linearly with the depth of the circuit.

So big circuits yield slow implementations.

2. If the number of parties is in the millions, it may be infeasible for

them all to have point-to-point communication links with each

other. It would in principle be possible to proxy all of the party-to-

party communication through a central server, but in a dynamic

environment such as the Internet, it may be difficult to even nail

down who the parties are, much less have them all agree on shared

secrets with each other.

So, if we want to use secure multiparty computation in practice,

what are we to do? We need to cheat in two different ways.

Avoid large circuits: Focus on interesting special cases.

Rather than use a BGW-like (i.e., general-purpose) MPC protocol di-

rectly, applications will typically use a special-purpose MPC protocol.

This sidesteps the issue that most interesting computations do not

have small circuit representations.

Let’s discuss each of the three applications:

• For the MPC-wallet and private-join applications, compa-

nies typically use an ad-hoc special-purpose MPC protocol

that looks nothing like BGW. These protocols very carefully

exploit the structure of the computation that the parties are

trying to run in an MPC to get savings.

• For the private-telemetry application, companies use a proto-

col that looks very similar to BGW. The only twist is that they

only run the protocol with circuits that have addition gates

(no multiplication gates!).

The simplest example of such a circuit is the private-sum

circuit, which takes as input a value xi from each client i, and

outputs the sum Âi xi. Even though this functionality seems

trivial (and it is!), it is already useful enough for a number of

practical applications. In fact, the largest-scale MPC protocols

ever run implement this private-sum protocol.

As far as I know, all applications of MPC today use one of these

two approaches. I know of no MPC protocol in use today that, say,

implements training of a neural net using BGW. The communica-

tion/computation cost of applying general-purpose MPC in such

settings is just too large.

applications of mpc 5

Avoid client-to-client interaction.

The other issue we have in BGW is that we assumed that there is a

fixed/static group of parties to the protocol.

• In the private-join application, there are only two parties,

and the parties have a pre-existing business relationship. So

participant churn is not an issue.

• In the MPC wallet application, there are typically only a

small number of parties. It is possible to make MPC pro-

tocols robust to the failure of a fraction of the parties, and

implementations use these tricks to allow making progress

even if some of the parties have failed.

• In the private-telemetry application, there are millions of

parties, so churn is a concern.

This performance cheat gets rid of the need for client-to-

client communication entirely. This is convenient because

the set of clients may evolve quickly over time (before even

a single iteration of the multiparty protocol has completed)

and also because communication is costly.

A common technique to handle participant churn here is

to work in the client/server model. The idea is to shift most

of the work of running the multiparty computation onto a

small number of powerful parties (“servers”)—maybe only

two or three. Each client secret-shares their input to the k ⌧
n servers, who run the multiparty computation amongst

themselves and return the answer to the clients.

This approach has major benefits in terms of communication

cost: Each client only communicates with the k servers and

each client’s communication cost is independent of the number

of clients. Compare this per-client cost with that

of BGW.
In addition, we only need to worry about keeping the k ⌧ n
servers online in steady state. To participate in the compu- For example, Apple runs one server

and a second organization runs the

other server. Divvi Up is a non-profit

whose only job is to run the second-

server for private-telemetry MPC

protocols.

tation, each client only needs to stay online long enough to

submit shares of its input to the servers.

The downside of this approach is security: An attacker now

only needs to compromise k ⌧ n servers to violate the

privacy of (i.e., recover the secret inputs of) all clients. For ex-

ample, if k = 2, then if the two servers decide to get together

and share their information, they learn the private data of all

clients.

Miningapplication : Private analytics
I

Example : Mozilla (o behind Firefox web browse
wants to know : Which webpages in

the Alexa top 10k are popular as

homepages ?

Non-private analytics

g "myTa homepage Datais Mozilla breach

&
nyt

, com S

-
S Surveillance

: S -
> Yeah

,

&
Problem : Mozilla learns every person's
-

homepagee - -
> Privacy failure .

↳
#al : Compute the aggregate statistic of

interest (which pages are popular)
while learning nothing else.

Lots of use cases : ("Prio" ~/ Dan Borch 2017)

* Apple uses this stuff to gather data
on Usage of the Photos app.

* Mozilla uses this technology
for gathering browser-usage data

* Apple, Google used these techniques
for gathering state on Govid EN apps

* Online-ad cos are working on using
this tech to gather ad- conversion Gata...

Dateanalytics (Private Histograms)
#den : Have 2 + servers store database in

secret-shared form.

* Clients can "write into DB" wo revealing
where what they wrote.

Throughout, all arithmetic will be in finite field #

(Think : integers mod 280-bit prine)

Clients Server A

n = 10k if we

are lookin #
& j) h

I
of clients who

A EF have homepages
in Alexa top 10k.

z

E
t

Server B

·
g

8
t
&

of clients who have

Each server holds additive
8- nyt. com as their home

-

secret share of DB .

-

paseCun . com

g I

* Clients send secret-shared DB "updates"
* Servers learn nothing* about which client has

which homepage .

-&compress us n
Notice : Each

I server individually
*

learns
V = 3

Clients
- I Server - dinin· data !

Ta -
h? · jet

I
E =

· & Server is

&
·

of clients who have
8- nyt. com as their home
I

- opage

Cun . com· I

Each client sends one of these "updates"...

Clients Server A

con
Vz = 2 fer h

-3

& ·&
nyt. com (x

-

r Server B

: 3

I

&

! ·
8
t &

& =

of clients who have
J

I- nyt. com as their home
I

- pasteCun . com

g I

At the end of the day for reporting period),

Server A

hJer
Servers publish&their stateNo t

recover agg Server B

statistics S

interest.~
↳ I

of clients who have
11

nyt. com as their home

- opage

Cun . com· c
- E Xi

Private Analytics so far

This simple scheme is already useful !

0
. Simple , easy to implementS
concretely efficient las long as # websites/counters

not too big)

1
.
Correct

.

clients and serves execute protocol
=>Servers get correct output.
For each top-10k website v.

[]# f clients that have was

C homepage .

2. Private

Malicious server "learns nothing" about

client data except what it can infer
from the protocol output.

V inputs X
,,

X
↑ adv 1

,

7 Sim s
.

t.

S View
of mel 3 = (Sim (f(x , ..., xc)3

Server i-

S execution
with 5

A

inputsSelien-
,
X (

Problem : One malicious client can completely
mess up

the computation !

Clients Server A

&
t
N

2

> Jes h

j
&T

E :
:

·
& · Server B

&

i

J &
8
t &

&
=

of clients who have
J

!!!
I- nyt. com as their home
I

- ↳ 7&page

Cun . com· I
Problems

* One client can "vote" many times
* Client can submit negative votes

* Client can cause output to be random garbage
-> Even worse

, servers can't tell when this happens
o who to blame

& hour : How to defend against
misbehavior in simple secret-sharing-
based protocols .

↳
Without paying

"too much"

in concrete efficiency.

Bre
When trying to achieve malicious security,
everything gets complicated :

* Malicious clients ?

serves ?

clients and seven ?

* Care about advs corrupting output
?

2Or only breaking client privacy .

....
malicious security
what keeps me up

at night. G

2
.9. BGW

Serves can use general-purpose MPCI
to detect & prevent client misbehavior.

↳ M(n) communication perclient

Better Idea : Special-Purpose Scheme

↳ O(1) # elms of comm per client

Simplest example :

* Protecting the private-analytics scheme

from malicious clients.

* Ensure that each client can only "vote once"

↑

#dea (BGY6] : Have servers check that each
J

client submission is well-formed before accepting it.

↳If not
, reject/ignore client submission

.

* Honest client will send shares XA
S

XBEF
·

whose sum is an all-zero rector with a single 1
.

* Servers want to check this property
without (a) communicating too much

(b) breaking client privacy.

XA Server A

G
- -N

Accept, procesission

Reject, discard& L

&r

submission

XB Server &

Sketch-verification scheme

Servers hold additive shares of Xe
"

Vectors of all Ob3 CynLet I = Sv/ at most 1 one

Completeness
X 2 = Honest servers accept

Soundness

X 2= Honest serves reject whp

Privacy/AVEK

X 2 => Honest server "learns nothing else"
about X

.

=> Simulator SVXx
,
X

& #" st
. Xp *XBe2

S
View of

deveat xi)] = &Sim /13

Stuh-verification [BGF 16]

- Servers use a linear function (sketch) to

compress rector in F -> #011)
↳ Sketch output summaries goodness/badness of input-

Key : Computing linear fus on additively see shared

data requires no interaction
.

-Servers use O(1)- size MPC to check
Sketch values

-

[
1 his sketching idea applies broadly to

3secret-sharing based protocols.... it's a

usefulfrick to know
.

Protocol [Boyle, Gilboa,
Ishai 6]

For checking xe1
= [vectors all zo

I Servers agree an random values (unknown to client)
~ = (r

,
. . -

,
m) ef

R = (r,

2

,,
r)ef &

2. Compute "test" values
Server B↑

-

Server A

XDE
p

u XEF
-

t & < Xx
,

r) ef ty < Xp
,

r) e J Shareso
a

A

T= <Xx
,

R]π Ti = <XB
,

R) E.] Shareso
t

3
. Use &(1)-sized MPC to check that

(+x + +z)- (Tx +Tz) = 0 et

Communication : 011) # elements - indep of %

Computation : O(n) ops in if

With sketch-verification,
malicious clients

Car no longer mess
up

the computation.

Clients
Xa

2

>
j Server A
i
t
AsTa~

&T
↓

E o

& val:

7 Xis↑it
BS

*
Server B

Analysis.ꋼ
Completeness (x2 = Honest serve accept)

Serves effectively test whether :

T

(x
,

r> - (x
,
R) = 0

X has I non-zero coordinate

2 - ri =0

Soundness

- Appeal to Schwartz-Zippel Comme
2

- Cheating client wins up . F .

Privacy/HVZK
- Servers only learn single-bit output of MPC.

-If XC 2
,

can simulate trivially .

Beware : Selective - failure attacks
&

The simple sketching scheme does not protect
client privacy/EK against a malicious server.

↳ Only HVzK

Attack:Malicious server guesses location of
non-wo element and shiffs it

* Rest of protocol is the same
. Ac/rej bit

* Guess correct -> Verif accepts leaks client

guess wong -> Verif rejects J Jata
.

N I
Server A

XyEFY

&x = *A

↓
&- Xg[F Server B

-

Guess correlt Guess Wrong

D D
I

& ! &

z

I g - - 1

· &

8 S i = !
Xy +Y+A =

- - 8
8 t - 8

- I

Summing up
: sketching can check "simple" predicates

with little communication.

Serve

D Using sketching
,

in the

2+ -server setting can

8-> construct private analytics
*
-

D
system that protects against
malicious clients.

For more complicated predicates, sketching is insufficient
2 .g- check that Xx + XB 50, 134 &F"

-

S
In some cases

,

can even prote that checking

such predicates on secret-shared data requires a[J
lot S communication. Uses comm complexity args,

What do we do then???

Proofson
Secret-Shared Data / Bouch

BoyleGilb,a
"Sketch-verification with a proof"

Verifier A
(Server A)

Prover XA & & aicrej
(Client) in N M

O
M

F # ~

Verifier B
(Server B)S XB ꋾ -> acc/rej

Prover's goal : Convince verifiers that Xa +XpE2,
for some If

As in sketch verification schemes
,

Want

Completeness V Xa +XBtI

Pr[<P, Vo,Vi] (Xa,XB) = "acc"] = /

Soundness V Xa +Xp
,

Xp
*

Pr[<P*, V
,
Va](Xa

,
Xp)= "acc"] = small

Privacy/AVER F Sim st
. XX > S

& Viewofserve
,

x)] = &Sim (1)

Useful results to know

Let #" be a language

Thm (BBCGF19)
I is computable by an arithmetic ckt of size ICI

,

there is a EK proof on secret-shared data for I

With comm cost Pr Old)
,
V-VO(1) elements of o

P and Vs can interact
,

cost falls to Clog uSublime!
in certain special cases - whenC has structure.

Ce . g . C has degree two
Construction provingThm is info-theoretic & simple
=> Very general tool forProtecting against misbehavior

in secret-sharing based protocols-
* Sublinear variant is especially useful for getting
malicious security at ofl) overhead.

The full result uses very nice abstractions(linear
PCPs) that I will not have time to describe

Instead,
will give you

one special case that

gives a flavor of the result.

Example : Checking that a
secret-shared

rector is in 50, 13"F"

Application : Mozilla wants to know whichwebsites

in Alexa top 10K use Flush (or other

browser feature) who learning who

is visiting which site.

Server A
> Xatf

n

+

8
Yxey #B

N
S

Server B

XBef"

Servers want to check Xa+ XB * (0
,
13 Ah

Idea : Let X = (x
, . . .

., Xn)
<y

-

Define polynomials F
, g ,

h
over # S

.
%
.

Vie (n]

f(i) = Xi Abusing notation

here... associating
g(i) = xi - 1 Y degene[I, with

n = 5 -

g 3 dezian- distinct elve of #

Xe 2
,

then Vie [n] h(i) = 0 =F

h(i) = f(i) · g(i) = Xi(Xi - 1) = 0 when Xi + 90, 13

X2 then :< (n] St
.
U(i) fo ef

By same argument .

key facts : 1 . Given share of X

,
can compute

shares of fit
, glt for ret wo comm

2. Given shares of craft of h
,

can

compute share of hi for relf wo comm

Recipe (simplified !)

1. Client computes poly h
.
Sends shares of

h to servers as proof it- En # elements

2. Servers check that Vie(n] h(i) = 0
·

↳ Serves compute shares of h(l) ,
. . . h(n)

↳ Publish random (in comb of shares
,
check-o

3.Servers check that f .g=h (client constructedpf wel)
↳ Servers choose random r* F

.

-> compute shares of Str)
,
g() ,

h(r)

↳ Use &(1) -sized MPC to check that

G(r) - g(r)- h() = 0
.

& With a few extra tweaks
,

don't even need MPC Step here
.

-P = V commi - n # elms each

↓-> V commi = 4 # elms each

Simple ! Info-theoretic !

This idea generalizes naturally to handle langs(
computed by arbitrary circuits over #

.

(

- When ckt computing & is structured
,

we can reduce the PBV comm (pS size).

- Basic idea :

* Say that lang I recognized by circuit In

consisting ofa repeated subcircuits.

(e . g . Checking x90, 1]" = #]
* Construct EK pf on see- shared data

St. Verifiers need to run an MPC of Cr/2

to check the proof

* Recursively use Ele
pf...

Verifiers
Proven I

,

- DA
& randomness ~

S

"Convince us
that we would

t accept it
, if we checked

N it using ~
&

<

#2
S

ru

[
"convince us

....
" S Practical impls

: actually use

these tricks...

Summing up...

Two tools for protecting against misbehavior

in protocols using secret sharing.

1 Sketch-crification
-

* for testing simple predicates on

large rectors uf small corm.

* No help from client needed

2. E1 Proofs on Secret-Shared Data

* for testing arbitrary predicates or

secret-shared data

* Requires help from client

* Comm depends on + complexity of predicate
↳ Can be subliner in clat size.

	Outline
	Introduction
	Applications of MPC
	Concrete efficiency of multiparty computation

