
Secure Multi-Party Computation (Cont.)
Notes by Yael Kalai

MIT - 6.5610
Lecture 13 (March 17, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• The BGW construction in the semi-honest setting (secure
against t < n/2 corruptions)

• The BGW construction in the malicious setting (secure
against t < n/3 corruptions)

The BGW Construction in the semi-honest setting

Last class we started to present the BGW multi-party computation
(MPC) construction due to Ben-Or, Goldwasser and Wigderson [1], in
the honest-but-curious. In this setting the adversary controls t < n/2
parties, but does not modify the behaviour of the parties it controls.
Rather it only observes their internal states and tries to learn infor-
mation about the secret inputs of the honest parties. We note that
their protocol is information theoretically secure! It does not rely on
any cryptography, and is secure even if the adversary is all powerful. We note that if we rely on cryptography

we can get security against any number
of corruptions!

Construction. The BGW protocol consists of three phases:

1. Secret sharing of inputs phase

2. Computation on shares phase

3. Reconstruction phase

We elaborate on each of these phases.

Phase 1: Secret-sharing of the inputs. Fix a prime p > n. Each party
secret-shares her input among the n parties using the (t + 1)-out-of-n
Shamir secret sharing scheme over GF[p]. Formally, each party Pi, Recall that an adversary that controls at

most t parties learns nothing (informa-
tion theoretically).

who wants to share a bit b ∈ {0, 1} does the following:

1. Select uniformly at random t coefficients a1, . . . , at from GF[p], and
let gb(x) = b + a1x · · ·+ atxt.

secure multi-party computation (cont.) 2

2. Send gb(j) to party Pj, for all j ∈ [n].

Phase 2: Computation on shares. The parties jointly compute the func-
tion f “on their shares,” as follows. Think of f as being represented
as an arithmetic circuit with addition gates and multiplication gates
modulo p. As we mentioned last class addi-

tion and multiplication modulo p is
complete. This is the case since we
know that addition and multiplication
modulo 2 is complete, and for any
bits a, b ∈ {0, 1}, it holds that a · b
mod 2 = a · b mod p and a + b
mod 2 = a + b − 2ab mod p.

The parties jointly compute each gate in a way that satisfies the
following invariant: If the parties start with random shares of the
input wires to the gate they end up with random shares of the output
wire to the gate. Suppose the input wires have values a and b and

By random shares we mean shares
that were chosen via a random degree
t polynomial that respects the value of
the gate.

were shared via random degree t polynomials ga and gb, respectively,
where ga(0) = a and gb(0) = b, and party Pi holds the shares ga(i)
and gb(i).

Addition gates modulo p: If the gate is an addition gate then the value
of the output wire is a + b. Note that ga+b := ga + gb is a random
degree t polynomial that satisfies

ga+b(0) = ga(0) + gb(0) = a + b.

Each party Pi can compute the i’th share of ga+b locally given the
shares ga(i) and gb(i) by

ga+b(i) = ga(i) + gb(i)

Note that no interaction is required here! The parties can do this
computation locally.

multiplication by a scalar modulo p: If the gate is a multiplication by
a non-zero scalar c ∈ GF[p] of the wire with value a, shared via the
random degree t polynomial ga, then the value of the output wire is
c · a. Note that gc·a = c · ga is a random degree t polynomial such that

gc·a(0) = c · ga(0) = c · a.

Therefore, each party Pi can compute the i’th share of this polyno-
mial locally by

gc·a(i) = c · ga(i)

We defer the computation of multiplication gates for later. For
now, simply assume there is a way to securely compute the shares of
multiplication gates as well, in a way that satisfies the invariant.

Reconstruction phase: Once the parties hold random shares of the
output gate, the parties simply send their share of the output gate
to all the parties that should receive the output. Each parties locally In some protocols we want all the

parties to receive the output, whereas
in others we may want only one party
(or a few parties) to receive the output.
This will come up when we compute
the shares of a multiplication gate.

reconstruct the value of the output gate using the reconstruction
algorithm of Shamir’s secret-sharing scheme.

secure multi-party computation (cont.) 3

Security

We next give an intuitive argument why this protocol is secure, as-
suming there is a way to securely compute random shares of mul-
tiplication gates from random shares of the input gates. Intuitively,
security follows from the fact that the adversary only sees t shares
for each gate, which we argued that are always random shares (i.e.,
shares of a random degree t polynomial that respects the value of
the gate). Thus, security follows from the security of Shamir’s secret
sharing scheme.

Remark: So far we have seen how the parties can compute linear
functions securely! It remains to show how to securely compute
shares of multiplication gates. For this we will use the fact that we
know how to compute linear functions securely.

Multiplication gates: Suppose the gate g is a multiplication gate
with input gates with values a and b that are shared via random
polynomials ga and gb, respectively.

It is tempting to set the secret sharing polynomial corresponding
to this gate to be the polynomial ga·b = ga · gb. Note that indeed

ga·b(0) := ga(0) · gb(0) = a · b,

as desired, and each party Pi can locally compute the shares of this
polynomial by setting

ga·b(i) = ga(i) · gb(i).

The problem is that ga·b is of degree 2t. So, now we will need 2t + 1
parties to reconstruct, and this number will grow with every multipli-
cation gate. So this seems like a bad idea. Moreover, this polynomial
is not random. Nevertheless, this serves as a first step. After this step
the parties will carry out two additional steps, to fix the two prob-
lems mentioned above: a degree reduction step and a rerandomization
step.

Degree reduction In the degree reduction step each party converts its
share of g(x) = h0 + h1 · x + . . . + h2tx2t to a share of the truncated
degree t polynomial, denoted by ĝ(x) = h0 + h1 · x + . . . + htxt. To
this end we use the following theorem.

Theorem 1. There exists a constant matrix A ∈ GF[p]n×n such that
for every degree 2t polynomial g, denoting by ĝ the corresponding degree t
truncated polynomial, it holds that:

(ĝ(1), . . . , ĝ(n))T = A · (g(1), . . . , g(n))T

secure multi-party computation (cont.) 4

We will later to see what this matrix A is. But before that, note that
assuming we know what A is, it seems like to compute the shares
of the multiplication gate we simply need to compute this linear
function securely! Recall, this is done in three phases:

1. Secret sharing phase: Each party Pi secret shares her input g(i)
using Shamir’s (t + 1)-out-of-n secret sharing scheme.

2. Computation phase: Each party locally applies the linear function
A on all the shares.

3. Reconstruction phase: Finally, all parties send Pi the shares corre-
sponding to ĝ(i).

Indeed, if we compute each multiplication gate by running this three
phase protocol, the parties will end up with shares of a a degree t
polynomial corresponding to the output gate . However, this poly-
nomial is not necessarily random, and this may be a problem for
security! To remedy this, before the parties run this degree reduction
step, they first rerandomize this degree 2t polynomial and then run
the degree reduction, to ensure that they are truncating a random
degree 2t polynomial.

Rerandomization: To rerandomize the degree 2t polynomial ga·b.
Each party Pi secret shares the value 0 using a Shamir’s (2t + 1)-
out-of-n secret sharing scheme. Namely, each party Pi chooses a
random degree 2t polynomial gi such that gi(0) = 0 and sends gi(j)
to each party Pj. Then each party Pi “rerandomizes” its share ga·b(i)
by adding to it the value ∑n

j=1 gj(i). Note that this is the i’th share
of the polynomial ga·b + g1 + . . . + gn, which is a random degree 2t
polynomial that on 0 evaluates to a · b. On this random polynomial
the parties run the degree reduction.

The proof of Theorem 1. Denote by V the n-by-n Vandermonde matrix,
where the i’th row is (1, i, i2, . . . , in−1). Let

g(x) =
2t

∑
i=0

hixi and ĝ =
t

∑
i=1

hixi

where g is a degree 2t polynomial, and ĝ is its degree t truncated
polynomial. Let

h = (h0, h1, . . . , h2t, 0, . . . , 0) ∈ GF[p]n

be the coefficients of g and let

ĥ = (h0, h1, . . . , ht, 0, . . . , 0) ∈ GF[p]n.

secure multi-party computation (cont.) 5

be the coefficients of ĝ. Note that

(g(1), . . . , g(n)) = V · h and (ĝ(1), . . . , ĝ(n)) = V · ĥ.

Also note that there is a linear projection function P that converts the
vector h to the vector ĥ. Namely, consider the n-by-n matrix P such
that for every i, j ∈ [n], P(i, j) = 1 if and only if i = j and they are
both in {1, . . . , t}, and otherwise P(i, j) = 0. Note that

P · h = ĥ.

Combining all of the above, we have that

(ĝ(1), . . . , ĝ(n))T = V · ĥ = V · P · h = V · P · V−1(g(1), . . . , g(n))

as desired. Thus, set
A = V · P · V−1.

The Malicious Setting

We next consider the setting where the adversary is malicious and
arbitrarily modifies the messages sent by the parties it controls. The
first question that we should ask is whether the protocol described
above is secure as is, against a malicious adversary. Recall that in
the last lecture we mentioned that Shamir’s secret-sharing scheme
has the property that we can reconstruct the secret even if some of
the parties send malicious shares. Specifically, we mentioned that
Shamir’s secret sharing scheme is the Read-Solomon code of the
message (f (0), f (1), . . . , f (t)), of length k = t + 1, which we know
can be decoded if at most n−k

2 of the coordinates are maliciously
corrupted. Note that

n − k
2

=
n − t − 1

2
.

Thus as long as the number of corrupted parties, t, is at most n−t−1
2 ,

which holds as long as t < n/3, we can reconstruct successfully!
This begs the following question: is the BGW protocol secure as-

suming the malicious adversary controls less than n/3 of the parties? The
answer is yes, if the adversary behaves maliciously only in the re-
construction steps (either corresponding to the output gate or corre-
sponding to a multiplication gate), and shares malicious shares on
behalf of the corrupted parties. However, if the adversary behaves
maliciously in the sharing phases, and sends shares that do not cor-
respond to a degree t function (say, it simply sends random shares to
all the parties), then the scheme is no longer secure! The issue is that

secure multi-party computation (cont.) 6

shares will no longer correspond to low-degree polynomials and as a
result the scheme will lose its error correction property.

This is fixed by using a verifiable secret sharing scheme, where the
dealer “proves” that it sent shares corresponding to a degree t poly-
nomial (or a degree 2t in the case of a rerandomization step). This
notion was introduced in [1], and they showed that if we replace each
secret sharing phase with a verifiable one then the protocol is indeed
secure against t < n/3 corruptions.

References

[1] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Com-
pleteness theorems for non-cryptographic fault-tolerant dis-
tributed computation (extended abstract). In Janos Simon, editor,
Proceedings of the 20th Annual ACM Symposium on Theory of Com-
puting, May 2-4, 1988, Chicago, Illinois, USA, pages 1–10. ACM,
1988.

	Outline
	The BGW Construction in the semi-honest setting
	Security
	The Malicious Setting

