
Secret Sharing
Notes by Yael Kalai

MIT - 6.5610
Lecture 11 (March 10, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Motivation

• Definition

• Construction due to Shamir

Motivation

Intuitively, a secret sharing scheme allows a dealer to share a secret s
among n parties P1, . . . , Pn such that any authorized subset of parties
can use all their shares to reconstruct the secret, while any other
(non-authorized) subset learns nothing about the secret from their
shares. Secret sharing has some direct applications, where we need to
distribute a secret to several parties/servers, in order to distribute the
required trust, as well as to allow reconstruction even if some of the
parties fail.

Additionally, secret sharing is a useful tool in many larger crypto-
graphic systems, notably, secure multi-party computation which will be
the topic of the upcoming lectures.

In a secret sharing scheme we want to ensure that no informa-
tion whatsoever is leaked to any unauthorized subset of parties. For
example, simply giving some of the bits of the secret to each party
certainly reveals information.

Secret sharing can be defined with respect to any access structure
that specifies the set of authorized subsets, as long as that access
structure is monotone (namely, if a subset is authorized, any larger
subset should also be authorized). We will focus on a common access
structure which is t-out-of-n or threshold secret sharing, where au-
thorized subsets are all those of size at least t, while sets of size less
than t are not authorize.



secret sharing 2

Definition

Definition 1. A t-out-of-n secret sharing scheme scheme over mes-
sage spaceM consists of a pair of efficient algorithms (Share,Reconstruct)
such that:

• Share is a randomized algorithm that takes as input a mes-
sage m ∈ M and outputs a n-tuple of shares (s1, ..., sn).

• Reconstruct is a deterministic algorithm that given a t-tuple of
shares {(i, si)}i∈I for |I| = t, outputs a message m ∈ M.

The following two properties are required to be satisfied.

Correctness: For every m ∈ M and every I ⊆ {1, . . . , n} of size t,

Pr
(s1,...,sn)←Share(m)

[Reconstruct({(i, si)}i∈I) = m] = 1

Security: For every m, m′ ∈ M and for every I ⊆ [n] such that
|I| < t,

(si)i∈I ≡ (s′i)i∈I

where (si)i∈[n] ← Share(m) and (s′i)i∈[n] ← Share(m′).

n-out-of-n Secret Sharing Scheme

Suppose n parties wish to share a secret m ∈ {0, 1}ℓ.

Share(m): Choose at random s1, . . . , sn ∈ {0, 1}ℓ such that ⊕n
i=1si =

m, and output (s1, . . . , sn).

Reconstruct(s1, . . . , sn) outputs ⊕n
i=1si.

Note that the correctness property follows from the construction,
and the security property follows from the fact that an equivalent
way to compute Share(m) is to choose at random {si}i ̸=j and set
sj = m⊕ (⊕i ̸=jsi, which implies that any set of shares that excludes at
least one share, are randomly distributed, independently of m.

t-out-of-n Secret Sharing Scheme

Take 1: For simplicity, suppose that t = 2. Then to share a secret m,
for every pair of distinct parties (i, j) in {1, . . . , n} generate 2-out-of-2
shares of m. Then give each party all the shares generated for that
party. Note that each party has n− 1 shares.

Problem: If we use this approach to construct a t-out-of-n secret
sharing scheme this will result with shares of size ( n

t−1).



secret sharing 3

Shamir’s idea [1]: Use polynomials! Suppose we wish to share a mes-
sage m ∈ {0, 1}. If we want to share ℓ bits we will use the single-bit
secret sharing scheme ℓ times, one for each bit. Choose a prime p
such that p > n.

Share(m): Choose a random degree t − 1 polynomial f : GF[p] →
GF[p] such that f (0) = m. This can be done by choosing a1, . . . , at−1 Recall that GF[p] denotes the field

with elements {0, 1, . . . . , p− 1} where
addition and multiplication are done
modulo p.

at random in GF[p], setting a0 = m and letting

f =
t−1

∑
i=0

aixi.

For every i ∈ [n] let si = f (i) and output (s1, . . . , sn). The shares can be the value of f on any
n distinct points in the field GF[p] as
long as none of these points is 0.Reconstruct({(αj, sαj)}j∈J): Solve t linear equations in t variables.

The variables are a0, a1, . . . , at−1 and each player Pαj holds a linear
questions:

∑ ai(αj)
i = sj

We note that these t linear equations are always independent (this
is a Vandermonde matrix, which is known to be invertible).

We emphasize that these t players can jointly recover not only the
secret m, but also the entire degree t− 1 polynomial that the dealer
chose, by computing:

f (x) =
t

∑
i=1

fi(x) · si

where fi is the unique degree t − 1 polynomial that satisfies that
fi(x) = 1 if x = αi and fi(x) = 0 for every x ∈ {αj}j∈[t]\{i}.
Namely,

fi(x) = ∏
j∈[t]\{i}

αj − x
αj − αi

Connection to Reed-Solomon Codes

Shamir’s secret-sharing scheme is very similar to the Reed-Solomon
error-correcting codes (1960), which is a beautiful coding scheme! In
a Reed-Solomon code a message m = (m0, m1, . . . , mt−1) ∈ {0, 1}t is
viewed as the unique degree t− 1 polynomial fm such that fm(i) =

mi for every i ∈ {0, 1, . . . , t− 1}. The codeword corresponding to the
message m is the evaluation of the polynomial f corresponding to m
on all the points in the field:

ECC(m) = ( fm(0), fm(1), . . . , fm(p− 1)).

What we have seen above is that this codeword can be uniquely
decoded even if all but t of the coordinates in the codeword were
erased.



secret sharing 4

It is also known how to decode if less than p−t+1
2 of the coordi-

nates were maliciously corrupted, and this is known to be optimal! The main disadvantage of the Reed-
Solomon ECC is that it is over a large
alphabet. Often people want an ECC
over the binary alphabet. For the
application of cryptography and secret-
sharing this is good enough.

Decoding from malicious corruptions is slightly trickier than decod-
ing from erasure, but it is not too hard (and is explained beautifully
in these Lecture notes by Anup Rao). This means that in Shamir’s se-
cret sharing scheme if a secret is shared among n parties and then the
n parties jointly try to decode, even if some of the parties try to foil
the outcome and give malicious shares, still the parties will be able to
jointly recover the secret, as long as less than n−t+1

2 of the parties are
corrupted.

Remark. In the next two classes we will see how to use Shamir’s
secret-sharing scheme to do secure multi-party computation, where a
set of parties wish to jointly compute a function of their secret in-
puts (such as the average of their salaries) without revealing their
secret inputs. Shamir’s secret sharing scheme will be used as a key
ingredient. Typically, in the setting of secure multi-party computa-
tion, two types of adversarial behaviors are considered: The first is
honest-but-curious, where the parties are assumed to follow the pro-
tocol honestly but they are curious and are trying to learn anything
they can about the secret inputs of the other players (by possibly col-
luding and sharing information). The second is adversarial where a
malicious party can deviate from the protocol in arbitrary ways.

We will see a protocol for the honest-but-curious setting. For that
setting Shamir’s secret sharing scheme is used and security with era-
sures is all we need. For the malicious case, which we will not cover
in this class, we use the fact that Shamir’s secret sharing scheme has
the stronger property that one can decode even if some of the shares
are faulty.

References

[1] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–
613, 1979.

https://homes.cs.washington.edu/~anuprao/pubs/codingtheory/lecture4.pdf

	Outline
	Motivation
	Definition
	n-out-of-n Secret Sharing Scheme
	t-out-of-n Secret Sharing Scheme
	Connection to Reed-Solomon Codes

