
Interactive Proofs and Zero Knowledge
Notes by Yael Kalai (with edits by Henry Corrigan-Gibbs)

MIT - 6.5610
Lecture 10 (March 3, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Interactive proofs

• Zero-knowledge interactive proofs

• Commitment schemes from LWE

Recap

In the last two classes we learned about fully homomorphic encryp-
tion (FHE) schemes. FHE is an important primitive in today’s world
where we have large amounts of (possibly sensitive) data that we
cannot store locally on our own devices. FHE allows us to store our
data encrypted on an untrusted platform, and yet allow the plat-
form to do computations on our encrypted data. Moreover, even if
our sensitive data is stored on a trusted platform, for example our
medical data is stored on our hospital servers, which we supposedly
trust, the hospitals may want to collaborate and learn from their joint
sensitive medical data. FHE allows them to collaborate without re-
vealing to each other sensitive information about each other’s data.
FHE indeed allows us to obtain secrecy but what about integrity?

Suppose we store our data on an untrusted platform and then
request the platform to perform computations on our encrypted data.
How do we know that indeed the platform is doing the instructed
computation? In other words, can we efficiently verify that a computation
was done correctly? Namely, is there a succinct and efficiently verifiable
proof that we can append to the output of a computation attesting to
the fact hat this output is indeed correct? This is the topic for the next
five lectures.

Following our convention that “efficient” means polynomial time,
we ask which computations (beyond P) have proofs of correctness
that can be verified in polynomial time? This is precisely the defini-
tion of the complexity class NP, which is the set of all languages that



interactive proofs and zero knowledge 2

have membership proofs (aka witnesses) that can be checked by a
polynomial-time verifier algorithm, denoted V . We would like proofs
of correctness for languages outside of NP. More precisely, our focus
is on a fine-grained version of the question above. Namely, do there
exist proofs of correctness for time T computations that can be verified in
time << T (say time Tϵ or even polylog(T))? Unfortunately, we do
not believe that every T-computable language has a proof (or a “wit-
ness”) of size << T. As you learned by now, cryptography is an art
of overcoming such barriers. We overcome this barrier by changing
the definition of a proof and by making use of some cryptographic
magic!

Interactive Proofs and Zero-Knowledge Proofs

Proof systems have been studied by mathematicians for thousands
of years, starting from Euclid (300 BCE). Yet, until recently, all proof
systems were of a somewhat similar form which is simply a list of
formulas that follow from a set of inference rules and axioms. This
changed in the mid eighties when Goldwasser, Micali and Rackoff
defined the notion of a zero-knowledge proof [2]. Intuitively, a zero-
knowledge proof is one that reveals no information beyond the valid-
ity of the statement (and can be verified in polynomial time). What
does “no information” mean? How is this formalized? Goldwasser et
al. formalized it as follows: No information means we could have
generated it on our own. However, with such formulation zero-
knowledge proofs exist only for easy languages (i.e., ones that are
in P).

To avoid this limitation, they completely changed the way we
think about proofs. They defined a new notion called interactive
proofs. Such proofs extend upon the classical notion of “proofs” in
two ways. First, rather than solely considering a verifier algorithm V ,
we instead think of the proof as arising from interaction between the
verifier V and a prover algorithm P . Second, we allow the verifier to
access “private” randomness that is not accessible to the prover.

Both the verifier and prover algorithms will have access to the
input of the problem instance. The two algorithms will exchange
messages sequentially, computing the next message in the sequence
as a function of the messages up to that point. Ultimately, the ver-
ifier algorithm will decide whether to accept or reject the problem
instance. We can think of the interaction metaphorically as the prover
trying to “convince” the verifier of the problem instance being true,
and of the verifier trying to verify that the prover is not “dishonest”
or “cheating” and misleading the verifier into accepting a false state-
ment.



interactive proofs and zero knowledge 3

Definition 1 (Interactive Proof system (IP)). An interactive proof
system for a language L consists of an interactive p.p.t. verifier al-
gorithm V and an interactive (possibly inefficient) algorithm P ,
which exchange a series of messages m1, . . . , mk, with each mes-
sage computed as a function of all the previous messages: mi =

V(x, m1, . . . , mi−1), and likewise for P . Notably, the verifier’s com-
putations may also depend upon private random bits not revealed to
the prover. Denote by (P ,V(r))(x) = 1 the event that the verifier V ,
with private randomness r, accepts the interactive proof after com-
municating with the prover P on the joint input x and assuming V
has randomness r. The following two properties are required to hold:

1. Completeness: ∀x ∈ L,

Pr[(P, V(r))(x) = 1] ≥ 2
3

2. Soundness: ∀x /∈ L and ∀ (malicious and possibly all powerful) P∗,

Pr[(P∗, V(r))(x) = 1] ≤ 1
3

.

Remark. These numbers ( 2
3 and 1

3 ) are arbitrary. By repeating the
interactive proof λ times and accepting if and only if at least λ

2 are ac-
cepting we can get completeness 1− negl(λ) and soundness negl(λ).
This follows from the Chernoff bound, which is a concentration
bound that says that if X1, . . . , Xλ are independent and identically
distributed Bernouli random variables such that Pr[Xi = 1] = p then
Pr[| 1λ ∑i∈λ Xi − p| > δ] ≤ 2−O(δ2·p·λ). See this for information about the

Chernoff bound.
The class IP is the set of all languages L that have such an in-

teractive proof. Note that NP ⊆ IP but IP may contain additional
languages.

The Importance of both interaction and randomness

We may ask what happens when either of these two properties (ran-
domization or interaction) are removed. If we remove randomization,
then the resulting class is NP. This is the case since then the algo-
rithms are deterministic, and hence the transcript of any interaction
between any prover-verifier pair (P ,V) could be generated by a
prover P ′ and given to a verifier V ′. The unknown randomness from
the verifier is key to the additional power of IP, as it is something
that an all-powerful prover cannot generate on its own. In contrast,
we can, without loss of generality, take the prover to be deterministic.

If, instead, we only remove interaction, then we get a complexity
class called Merlin-Arthur, or AM. It is not known whether AM = NP

or whether AM = IP, but we believe that AM = NP.

https://en.wikipedia.org/wiki/Chernoff_bound


interactive proofs and zero knowledge 4

Is IP more expressive than NP?

It turns out that interactive proofs are actually very powerful:

Theorem 2 (Shamir ‘90 [3]). IP = PSPACE.

Let’s go back to our story about zero-knowledge proofs. It was
shown by Goldreich, Micali and Wigderson [1] that every proof can
be converted into a zero-knowledge interactive proof. Namely, they
presented a zero-knowledge proof for every language in NP. More-
over, the prover is efficient if it is given a valid witness as input.
These proofs are widely used in cryptography. For example, they are
used for authentication, where a user wants to prove that he knows
a secret key corresponding to a given public key. We need this proof
to be zero-knowledge. Actually, one of the most widely used digital
signature scheme (ECDSA) uses the idea of zero-knowledge proofs.
We will not focus on constructions of zero-knowledge proofs since it
is covered in other cryptography classes at MIT (such as 6.5620 and
6.1600), but let me give you a high-level idea since it is too simple
and beautiful to omit entirely.

Zero-knowledge proofs for NP

What does it mean to “learn nothing” from an interaction with some-
one? Cryptography gives a simple, beautiful, and useful definition.
The basic idea is that you have learned nothing from a conversation
if you could have sat at home by yourself and written down a tran-
script of the conversation (without speaking with anyone else).

The cryptographic formalization of zero knowledge for an interac-
tive proof system looks like this:

Definition 3 (Zero knowledge). Zero knowledge: ∀ (malicious and
possibly all powerful) V∗, there exists a p.p.t algorithm Sim (“the
simulator”) such that ∀x ∈ L,

{ViewV∗(P(x),V∗)} ≈ {Sim(x)},

where ViewV∗(P(x),V∗) denotes the “view” of the malicious verifier
V∗ in its interaction with the prover—this is the verifier’s random-
ness and all of the message it receives from the prover P running on
input x.

We will see a zero-knowledge proof for a specific NP-complete
language called 3Col which contains the set of all graphs G = (V, E)
such that the set of vertices V can be colored by three colors: C :
V → {1, 2, 3} such that no two adjacent vertices have the same color.
Namely, for every (u, v) ∈ E, C(u) ̸= C(v).



interactive proofs and zero knowledge 5

We convert a coloring C : V → {1, 2, 3}, which is a proof that the
graph G is 3-colorable, into a zero-knowledge proof, as follows:

1. The prover does the following:

(a) Choose a random permutation π : {1, 2, 3} → {1, 2, 3}.
Denote by V = {1, 2, . . . , n}.

(b) For every i ∈ [n] place the color π(C(i)) in an opaque locked
box and send the n locked boxes to the verifier.

2. The verifier chooses a random edge (i, j) ∈ E and sends (i, j) to the
prover.

3. The prover sends the keys that open only box i and box j.

4. The verifier accepts if and only if the colors in these boxes are
distinct and are legal (i.e., belong to the set {1, 2, 3}).

Is this zero-knowledge? Yes, the only thing the verifier learned
is two distinct random colors. The verifier could have simulated
the prover’s last message on its own. It has completeness 1. The
soundness is only 1− 1

|E| but can be amplified via repetitions. Each
time we repeat we need to choose a fresh permutation.

Remark. The above protocol is a physical protocol where the prover
sends opaque locked boxes. Such boxes have a digital analogue. This
is called a commitment scheme.

Commitment Schemes

Definition 4. A commitment scheme corresponding to a message
spaceM consists of a pair of algorithms (Gen,Com):

• Gen is a p.p.t. algorithm that takes as input the security
parameter 1λ and outputs public parameters, denoted by
pp ∈ {0, 1}N where N = poly(λ).

• Com is a polynomial-time computable function that takes an
input public parameters pp, a message m ∈ M and random-
ness r ←R {0, 1}λ and outputs a commitment Com(pp, m, r).

One can think of both Gen and Com as
randomized algorithms. We chose to
explicitly include the randomness of
Com, and hence think of it as being de-
terministic since when the commitment
is opened the randomness is revealed

The following two properties are required to hold:

• Hiding: For every m0, m1 ∈ M,

(pp,Com(pp, m0, r0)) ≈ (pp,Com(pp, m1, r1))

for pp← Gen(1λ) and r0, r1 ←R {0, 1}λ.

• Binding: For every p.p.t. adversary A:

Pr
pp←Gen(1λ)

[A(pp) = (m0, r0, m1, r1) s.t. m0 ̸= m1 ∧ Com(pp, m0, r0) = Com(pp, m0, r0) = negl(λ).



interactive proofs and zero knowledge 6

Construction from the LWE assumption

In what follows we construct a commitment scheme for the message
spaceM = {0, 1}.

• Gen(1λ) chooses a random matrix A ←R Zm+n
q and a random

vector u←R Zm
q . It outputs pp = (A, u)

• Com((A, u), b, (s, e)) = As + e + bu

Note that the hiding property follows directly from the LWE as-
sumption. The binding property is statistical. Namely,

Pr
A,u

[∃s0, s1 ∈ Zn, e0, e1 ∈ [−B, B]m : As0 + e0 = As1 + e1 +u] = negl(λ).

This follows from a simple counting argument assuming n log q +

m log B << m log q.

Remark. We know how to construct a commitment scheme from any
one-way function (which is a minimal assumption) but the analysis
is quite complicated. The resulting commitment scheme is also sta-
tistically binding and computationally hiding. We also know how to
construct commitment schemes that are statistically hiding and com-
putationally binding from any one-way function. These schemes are
interactive and complicated.

References

[1] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to
prove all np-statements in zero-knowledge, and a methodology
of cryptographic protocol design. In Andrew M. Odlyzko, editor,
Advances in Cryptology - CRYPTO ’86, Santa Barbara, California,
USA, 1986, Proceedings, volume 263 of Lecture Notes in Computer
Science, pages 171–185. Springer, 1986.

[2] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowl-
edge complexity of interactive proof-systems (extended abstract).
In Robert Sedgewick, editor, Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, May 6-8, 1985, Providence,
Rhode Island, USA, pages 291–304. ACM, 1985.

[3] Adi Shamir. Ip=pspace. In 31st Annual Symposium on Foundations
of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990,
Volume I, pages 11–15. IEEE Computer Society, 1990.


	Outline
	Recap
	Interactive Proofs and Zero-Knowledge Proofs
	The Importance of both interaction and randomness
	Is IP more expressive than NP?
	Zero-knowledge proofs for NP
	Commitment Schemes
	Construction from the LWE assumption

