
Fully Homomorphic Encryption (part I)
Notes by Alexandra Henzinger

MIT - 6.5610
Lecture 7 (February 24, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

In this class (and the next class), we will cover one of the most excit-
ing and surprising advances in cryptography in the last twenty years:
fully homomorphic encryption—that is, encryption schemes that let us
evaluate arbitrary functions directly on encrypted data, without ever
decrypting it.

Fully homomorphic encryption (FHE) is an extremely powerful
tool: from it, we can construct many of the primitives we have seen
so far (private information retrieval, public-key encryption, etc), as
well as a huge array of new tools and applications. In particular, we
can securely and privately outsource the computation of any function
to an untrusted server by encrypting our inputs, sending them to
the server, having the server homomorphically evaluate its chosen
function directly on the encrypted inputs, and then letting the server
send us back the encrypted result.

History of FHE. While the idea of FHE was first suggested in 1978

by Rivest, Adleman, and Dertouzos [6], it took until 2009 for the first
secure (i.e., unbroken) construction to be proposed in a paper by
Craig Gentry—who, at the time, was a PhD student at Stanford [3].
Since then, there have been many improvements to known FHE
schemes. In 2011, Brakerski and Vaikuntanathan [1] showed how
to construct FHE directly from the learning-with-errors (LWE) as-
sumption, which we covered last week [5]. In 2013, Gentry, Sahai,
and Waters gave an elegant and conceptually simple construction of
FHE (sometimes referred to as the “GSW scheme”) [4], which also
relies only on LWE. We will see this GSW construction in the next
two lectures.

In particular, we will cover:

• FHE definition (today)

• Stretch break

fully homomorphic encryption (part i) 2

• Constructing FHE from LWE:

– Step one (today): levelled FHE that can support
bounded-depth computations

* Background and intuition

* The GSW construction

– Step two (next Monday): bootstrapping FHE to sup-
port arbitrary-depth computations

• FHE applications (next Monday)

• Open questions in FHE (next Monday)

FHE definition and syntax

We will start by formally defining the syntax of a FHE scheme. In The syntax that we will see here is for a
secret-key FHE scheme, though public-
key variants exist as well. In fact, the
distinction is not particularly important
because sufficiently powerful secret-key
FHE implies public-key FHE.

particular, we will work with a FHE scheme where:

• the message space is bits (i.e.,M = Z2), and

• the model of computation is Boolean circuits (i.e., circuits
composed of additions and multiplications gates over Z2—or,
equivalently, XOR and AND gates).

Since additions and multiplications over Z2 are “mod 2”-complete,
this is an extremely general model of computation that captures the
programs we can write on computers today.

We will define a FHE scheme with respect to a function class C,
which contains all of the circuits that our scheme can homomor-
phically evaluate. Given such a function class C, we say that a FHE
scheme is a tuple of four efficient (i.e., PPT) randomized algorithms
(KeyGen,Enc,Dec,Eval) that look as follows: Here, the differences to standard secret-

key encryption, as we saw in lecture 4,
are highlighted in blue.• KeyGen(1n)→ (sk, ek).

Given as input the security parameter, n ∈ N, the KeyGen

algorithm outputs:

– a decryption key sk (kept secret by the user), and

– an evaluation key ek (which we think of as public,
because it is revealed to any party that will per-
form homomorphic computations on ciphertexts
encrypted with sk).

• Enc(sk, µ)→ ct.

As usual, the Enc algorithm takes as input a secret key sk and
a message bit µ and outputs a ciphertext ct encrypting µ.

• Dec(sk, ct)→ µ.

fully homomorphic encryption (part i) 3

As usual, the Dec algorithm takes as input a secret key sk and
a ciphertext ct and outputs the message bit µ encrypted by ct.

• Eval(ek, F, ct1, . . . , ctℓ)→ c̃t.

The Eval algorithm is given as input:

– an evaluation key ek,

– a Boolean circuit F : Zℓ
2 → Z2 that belongs the This notation means that the circuit F

maps ℓ input bits to a single output bit.supported function class C, and

– ℓ ciphertexts representing the inputs to F.

Then, Eval produces a ciphertext that encrypts the circuit out-
put (i.e., the evaluation of F on each of the encrypted input
bits). Here, we call the output c̃t the “evaluated” ciphertext.

We require the four algorithms (KeyGen,Enc,Dec,Eval) to satisfy
the following three properties:

1. Correctness: for every security parameter n ∈ N, for every circuit
F ∈ C, and for any inputs µ1, . . . , µℓ ∈ Z2 to F, it holds that:

Pr

Dec(sk, c̃t) = F(µ1, . . . , µℓ) :
(sk, ek) ← KeyGen(1n)

cti ← Enc(sk, µi) for all i ∈ [ℓ]

c̃t← Eval(ek, F, ct1, . . . , ctℓ)

 ≥ 1−negl(n).

That is, encrypting inputs to F with Enc, then calling Eval, and
finally decrypting with Dec correctly produces the evaluation of
circuit F on the given inputs (with high probability).

2. CPA-security (as defined in Lecture 2): For every PPT adversary A
there exists a negligible function µ : N → N such that for every
security parameter n ∈ N, A wins in the following game with
probability at most 1

2 + µ(n):

• The challenger samples (sk, ek) ← KeyGen(1n) and sends
(1n, ek) to the adversary.

• A chooses mi ∈ {0, 1} and receives ci ← Enc(sk, mi).

This step can be repeated polynomially many times.

• The challenger chooses a random bit b ← {0, 1} and sends
the ciphertext c← Enc(sk, b) to the adversary.

• The adversary A upon receiving c outputs a bit b′ and it
wins if and only if b′ = b.

3. Compactness: for every security parameter n ∈ N, for every
circuit F ∈ C, and for any inputs µ1, . . . , µℓ ∈ Z2 to F, let

(sk, ek) ← KeyGen(1n)

cti ← Enc(sk, µi) for all i ∈ [ℓ]

c̃t← Eval(ek, F, ct1, . . . , ctℓ)

fully homomorphic encryption (part i) 4

Then, it must hold that the bit-length of both the “fresh” cipher- Since Enc and Eval must be PPT algo-
rithms, the bit-length of fresh cipher-
texts and of evaluated ciphertexts here
will be O(poly(n)).

texts cti and the “evaluated” ciphertext c̃t depends only on the
security parameter n, and is independent of the size |F| of the
evaluated circuit or the number of inputs ℓ. There also exist weaker but still in-

teresting definitions of compactness,
which require that the size of the evalu-
ated ciphertext be sublinear in the size of
the evaluated circuit, |F|.

Why do we need all three properties? A meaningful FHE scheme
must simultaneously satisfy all three properties described above—
otherwise, trivial and uninteresting solutions exist:

1. Without correctness, we could just use an encryption scheme that
is not homomorphic.

2. Without security, each ciphertext could just consist of the message
that it is encrypting in the clear.

3. Without compactness, the Eval algorithm could just output the
concatenation of the circuit F and each of the input ciphertexts
ct1, . . . , ctℓ. Then, Dec could just decrypt each of the ciphertexts
ct1, . . . , ctℓ and directly evaluate the circuit F on the resulting
values.

With respect to what function class can (and will) we build FHE? We
defined an FHE scheme with respect to a function class that governs
what type of circuits the scheme can homomorphically evaluate.
Clearly, the more expressive this function class is, the more powerful
our FHE scheme will be. Various flavors of homomorphic encryption
exist for various function classes.

In particular, any Boolean circuit can be written using only addi-
tion and multiplication gates over Z2. We will differentiate between
circuits based on the number of addition/multiplication gates that
they contain, as well as the layout of these gates.

• Circuits with only addition gates: a circuit that consists
of only additions over Z2 can be evaluated using a linearly
homomorphic encryption scheme. As we saw in lecture 5, we
can build linearly homomorphic encryption from LWE. This is known as the Regev encryption

scheme, since it was introduced by
Regev in [5].• Circuits with only multiplication gates: similarly, a circuit

that consists of only multiplications over Z2 can be evaluated
using a multiplicatively homomorphic encryption scheme. Stan-
dard encryption schemes such as El Gamal [2] and RSA [7]
are multiplicatively homomorphic, but not over Z2, rather
over Z∗p where p is a large prime for El Gamal, and over Z∗n
where n is a product of two large primes for RSA. We do not cover these schemes in this

course since they are not post-quantum
secure.In the next two lectures, we will show how to build FHE for very

general function classes:

fully homomorphic encryption (part i) 5

• Arbitrary circuits of a bounded depth: today, we will see
how to build an FHE scheme that supports bounded-depth
circuits, also called a levelled FHE scheme.

Roughly, the reason why our scheme will only support
bounded-depth computations is because each homomor-
phic evaluation of an addition or multiplication gate will
incur some error growth. Once this error grows too large, the
ciphertexts will be garbled and can no longer be decrypted.
So, to avoid this, the number of addition and multiplication
gates that we can evaluate will be bounded.

• Arbitrary circuits: in the next lecture, we will see how to
boost a levelled FHE scheme to one that can support arbi-
trary circuits, under some additional assumptions. The key
idea here will be a procedure to “refresh” ciphertexts to reset
their error to a small level. This beautiful technique will let
us homorphically evaluate any Boolean circuit under encryp-
tion, with an overhead that is only polynomial in the security
parameter n.

To build these FHE schemes, we will see how to homomorphi-
cally evaluate addition gates and multiplication gates on ciphertexts.
Composing these two types of gates will then give us the power to
evaluate general Boolean circuits.

Building “levelled” FHE: Background and intuition

We will start by providing some background and intuition for Gentry,
Sahai, and Water’s construction of levelled FHE.

At a high level, the GSW scheme relies on the observation that the
eigenvectors of matrices are preserved across addition and multi-
plication. Specifically, for any dimension ℓ ∈ N, let C1, C2 ∈ Zℓ×ℓ

q
denote two matrices. Let vector v ∈ Zℓ

q be an eigenvector of matrices
C1 and C2 with eigenvalues λ1 ∈ Zq and λ2 ∈ Zq, respectively. This
means that the following relations hold:

C1 · v = λ1 · v ∈ Zℓ
q

C2 · v = λ2 · v ∈ Zℓ
q

Then, we get the following two properties:

• (C1 + C2) · v = C1 · v + C2 · v = (λ1 + λ2) · v
That is, the vector v remains an eigenvector of the summed
matrix (C1 + C2), with associated eigenvalue λ1 + λ2 ∈ Zq.

• (C1 · C2) · v = C1 · (C2 · v) = C1 · v · λ2 = v · λ1 · λ2

fully homomorphic encryption (part i) 6

That is, the vector v remains an eigenvector of the product
matrix (C1 · C2), with associated eigenvalue λ1 · λ2 ∈ Zq.

Intuition. To build FHE, we will take advantage of this behavior of
eigenvectors as follows: in our scheme, the secret key will be a vector
with entries in Zq. Then, roughly speaking, our ciphertexts will be
matrices in Zℓ×ℓ

q whose eigenvector will be the secret-key vector and
whose associated eigenvalue will be the message being encrypted.
With this setup, we see that:

• To decrypt a ciphertext matrix, it suffices to multiply the
matrix by the secret-key vector. This produces the underlying
message, scaled by the secret-key vector.

• To evaluate an addition gate on two ciphertexts, it suffices
to add up the two matrices. This produces a ciphertext that
encrypts the sum of the underlying messages.

• To evaluate a multiplication gate on two ciphertexts, it suf-
fices to multiply the two matrices. This produces a ciphertext
that encrypts the product of the underlying messages.

Unfortunately, we cannot exactly instantiate this template to build
a secure encryption scheme—after all, efficient algorithms exist to
find the eigenvectors of matrices. However, using the learning-with-
errors (LWE) assumption, we can construct an approximate version of
this scheme. Specifically, in our FHE scheme, the secret-key vector s
will be a noisy eigenvector of each ciphertext matrix C ∈ Zℓ×ℓ

q such
that the following equation holds:

C · s = s · µ + e, (1)

where µ ∈ Z2 is the message being encrypted and e ∈ Zℓ
q is a

small error vector. We will carefully set up our encryption scheme
so that this invariant (i.e., equation (1)) holds after encryption, and
is preserved after computing (a bounded number of) homomorphic
addition and multiplication gates.

Building “levelled” FHE: the GSW construction

Now that we have built up some intuition, we will dive into the GSW
construction. Here, we will work with the LWE assumption with
parameters (m, n, q, χ) with sufficiently large m. Specifically, we need m ≥ (n + 1) · log q ·

c, where c is a bound on the number of
messages we will encrypt with any one
secret key.

Given these LWE parameters, we will let ℓ = (n + 1) · log q. Then,
the construction works as follows:

• KeyGen(1n)→ s ∈ Zn+1
q . For now, we will ignore the evaluation

key ek. We will need this evaluation
key in the next lecture, to boost our
scheme to handle arbitrary-depth
encryption circuits.

– Sample a random vector s′ ←R Zn
q .

fully homomorphic encryption (part i) 7

– Output the vector s =

(
−s′

1

)
∈ Z

(n+1)
q as the secret

key.

• Enc(s ∈ Z
(n+1)
q , µ ∈ Z2)→ C ∈ Z

ℓ×(n+1)
q .

– Sample a random matrix A← Zℓ×n
q .

– Sample an error vector e←R χℓ.

– Build the matrix B =
(

A || As′ + e
)
∈ Z

ℓ×(n+1)
q .

That is, B here is the A-matrix with the vector com-
puted as (As′ + e) appended as another column.

– Let G ∈ Z
ℓ×(n+1)
q be some fixed, public error-

correcting matrix that we will define later. As we will see, we will need to care-
fully craft this matrix G to allow us to
support homomorphic multiplications.– Output the matrix C = B + µ ·G as the ciphertext.

• Dec(s ∈ Z
(n+1)
q , C ∈ Z

ℓ×(n+1)
q)→ µ ∈ Z2.

– Compute the vector v = C · s.

– Output “0” if the magnitude of each entry of v is
small (i.e., less than q/4). Otherwise, output “1.”

Before we describe how to perform homomorphic additions and
multiplications, we will first argue that this scheme is (1) secure, and
(2) correct, in the sense that calling Dec on a fresh ciphertext output
by Enc produces the correct result.

Security. The LWE assumption with parameters (m, n, q, χ) tells us
that

(A, As′ + e) ≈C (A, u),

where A ←R Zm×n
q , s′ ←R Zn

q , e ←R χm, and u ←R Zm
q . So, under

the LWE assumption, the matrix B ∈ Z
ℓ×(n+1)
q generated as part of

the Enc algorithm must computationally indistinguishable from a
random matrix U ←R Z

ℓ×(n+1)
q (as long as m ≫ ℓ). As a result, the

ciphertext C = B + µ ·G (for some µ ∈ Z2) must also be computa-
tionally indistinguishable from random. This implies CPA security.

Correctness of Enc and Dec. For any security parameter n ∈ N, let s
denote the secret-key vector output by running KeyGen(1n). Then, for
any message µ ∈ Z2, we observe that:

C← Enc(s, µ) =
(

A || As′ + e
)
+ µ ·G.

To decrypt this ciphertext C, the decryption algorithm Dec computes
the product with the secret-key vector s, and checks whether each
entry of the resulting vector is large or not. Here, we observe that:

fully homomorphic encryption (part i) 8

C · s =
((

A || As′ + e
)
+ µ ·G

)
· s

=
((

A || As′ + e
)
+ µ ·G

)
·
(
−s′

1

)

=
(

A || As′ + e
)
·
(
−s′

1

)
+ µ ·G ·

(
−s′

1

)

= −As′ + As′ + e + µ ·G ·
(
−s′

1

)
= µ ·Gs + e. (2)

We refer to equation (2) as the “decryption invariant.” We have just
shown that this decryption invariant holds after encryption with
Enc. Our goal will be to make sure that this decryption invariant is
preserved across homomorphic operations.

Indeed, if this decryption invariant holds (with a small enough
error vector e, and with a non-zero matrix G), then decryption will
succeed in recovering the underlying message µ: if µ = 0, the prod-
uct of C · s exactly recovers the error vector e, whose entries we know
will have low norm (i.e., they are close to 0). On the other hand, if
µ = 1, the product of C · s recovers the vector Gs + e. Since s here
contains a uniformly random vector in Zn

q , and since the matrix G is
non-zero, we expect at least one entry of Gs + e to have large norm
(i.e., to be close to q/2), whenever q is sufficiently large. As a re-
sult, checking whether the entries of the resulting vector are “big” or
“small” lets us recover the encrypted message µ.

Finally, we will now discuss how to homomorphically evaluate
bounded-depth circuits.

Homomorphic addition. To compute an addition gate on two cipher-
texts, it suffices to add their corresponding matrices. That is:

Eval(“+′′, C1, C2)→ C.

• Output C = C1 + C2

This works, because it (roughly) preserves the decryption in-
variant in equation (2). Namely, when we call Dec on the output
of Eval(“+′′, C1, C2), where matrices C1 and C2 respectively encrypt
the messages µ1 and µ2 and satisfy the invariant in (2), we get that:

Eval(“+′′, C1, C2) · s = (C1 + C2) · s
= C1s + C2s

= (µ1 ·Gs + e1) + (µ2 ·Gs + e2)

= (µ1 + µ2)︸ ︷︷ ︸
new message

·Gs + (e1 + e2)︸ ︷︷ ︸
new error

.

fully homomorphic encryption (part i) 9

It is worth noting that there is some slight error growth here: the Addition as presented here is over
Zq (rather than mod 2). This is still
sufficient to implement arbitrary
Boolean circuits.

error in the resulting ciphertext may double in magnitude (exactly
as in the linearly homomorphic encryption scheme that we saw in
lecture 5). However, since this error growth is relatively small, it
is manageable as long as we set our LWE parameters to be large
enough.

Homomorphic multiplication. To compute a multiplication gate on
two ciphertexts, we will need to do something slightly more compli-
cated than just taking the product of their corresponding matrices.
Specifically, we need to carefully pick the error-correcting matrix G
to support homomorphic multiplications. We define an associated
function h that has two properties (we will be slightly sloppy with
the notation here):

1. given as input an arbitrary matrix C, the function h outputs a
matrix that is log q× wider than C, but whose entries are all small
(namely, they are values in {0, 1}), and

2. the function h is the “inverse” operation to the matrix G, in the
sense that for any matrix C, it holds that

h(C) ·G = C.

Then, we can homomorphically evaluate multiplications as follows:

Eval(“×′′, C1, C2)→ C.

• Output C = h(C1) · C2

Intuitively speaking, this works because:

1. Approximate eigenvectors are preserved across multiplication, as
long as the matrix that we multiply by has small entries (to prevent
large error growth).

2. Applying the h-transform to the ciphertext matrix C1 ensures that
we are multiplying by a matrix with small entries.

More formally, when we call Dec on the output of Eval(“× ”, C1, C2),
where matrices C1 and C2 respectively encrypt the messages µ1 and

fully homomorphic encryption (part i) 10

µ2 and satisfy the invariant in (2), we get that:

Eval(“× ”, C1, C2) · s = (h(C1) · C2) · s
= h(C1) · (C2 · s)
= h(C1) · (µ2 ·Gs + e2)

= µ2 · h(C1) ·Gs + h(C1) · e2

= µ2 · C1s + h(C1) · e2

= µ2 · (µ1 ·Gs + e1) + h(C1) · e2

= (µ1 · µ2)︸ ︷︷ ︸
new message

·Gs + (µ2e1 + h(C1) · e2)︸ ︷︷ ︸
new error

Here, since µ2 is a bit and the entries of the matrix h(C1) are also
bits, we know that the error in the resulting ciphertext must be small
in magnitude. Namely, since C1 has dimensions ℓ-by-(n + 1), we
know that h(C1) will have dimensions ℓ-by-(n + 1) · log q, and so the
error in the output ciphertexts will be at most a factor of ((n + 1) ·
log q + 1) larger than the error in either of the input ciphertexts.

What error-correcting matrix G should we use? Gentry, Sahai, and
Waters gave a clean and simple way to instantiate the error-correcting
matrix G and its associated “inverse” operation h. In particular,
they take the function h to be binary decomposition. The binary
decomposition of a matrix C ∈ Z

ℓ×(n+1)
q produces a matrix Ĉ ∈

Z
ℓ×(n+1)·log q
2 —which is a slightly wider matrix that still contains the

same information, but whose entries are now just bits!
Then, the corresponding error-correcting matrix G is the binary

“recomposition” matrix. Concretely, G is a matrix in Z
(n+1)·log q×(n+1)
q

that looks as follows (where all of the unmarked entries are zeros):

G =



1
2
...

2log q−1

1
2
...

2log q−1

· · ·
1
2
...

2log q−1


What type of circuits can we evaluate? All in all, the encryption

fully homomorphic encryption (part i) 11

scheme we just saw has the following error growth: after each add
gate, the error doubles; after each multiplication gate, the error is
multiplied by ≈ n log q, on LWE security parameter n and LWE mod-
ulus q. So, given error that falls in the initial range [−B, . . . , B], we
can still decrypt after evaluating any Boolean circuit of depth up to
d, as long as q ≫ (n log q)d · 2B. Equivalently, for large enough q, the
depth we can support is roughly d ≈ n0.99.

In the next lecture, we will see an absolutely beautiful idea to
boost this encryption scheme to compute arbitrary-depth circuits!

References

[1] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic
encryption from ring-lwe and security for key dependent mes-
sages. In Annual cryptology conference, pages 505–524. Springer,
2011.

[2] Taher El Gamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. In CRYPTO, pages 10–18,
1984.

[3] Craig Gentry. A fully homomorphic encryption scheme. Ph.D.
thesis, Stanford University, 2009.

[4] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Advances in Cryptology–
CRYPTO 2013: 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, pages 75–92.
Springer, 2013.

[5] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. Journal of the ACM, 2009.

[6] Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. On
data banks and privacy homomorphisms. Foundations of secure
computation, 4(11):169–180, 1978.

[7] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method
for obtaining digital signatures and public-key cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

	Outline
	FHE definition and syntax
	Building ``levelled'' FHE: Background and intuition
	Building ``levelled'' FHE: the GSW construction

