
Symmetric Encryption: PRPs, CBC Mode, AES, and
DES
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 4 (February 12, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Logistics

• Due Friday: Pset 1

• Due Friday: Post a project idea on Piazza

Outline

• Pseudorandom permutations (PRPs)

• CBC Mode

• AES

• DES

symmetric encryption: prps, cbc mode, aes, and des 2

Pseudorandom permutations and block ciphers

Very often in practice, we build encryption schemes using pseudo-
random functions, as we saw with counter mode.

An alternative approach is to start from a related primitive, called
a pseudorandom permutation (PRP). In practical contexts, we call
PRPs “block ciphers.”

Why use a PRP instead of a PRF? We already saw how to construct
encryption schemes from PRFs. So why discuss PRPs? The main
reasons are historical and practical: the most widely used encryption
schemes are built from PRPs.

Definition.

Like a PRF, a PRP is defined over a keyspace K and input space X .
Unlike a PRF, a PRP actually consists of two efficient algorithms P
and P−1, both with the type P, P−1 : K×X → X .

When using a block cipher (PRP) with input space X = {0, 1}n, we
refer to the bitlength of the input space n as the block size.

A PRP is very similar to a PRF except that:

• for all keys k ∈ K, P(k, ·) maps distinct inputs to distinct
outputs, and

• there is an efficient algorithm P−1(k, ·) that inverts P(k, ·).
Neither of these properties is true for a PRF.

In more detail, we demand the following properties of a PRP:
Correctness. A PRP has a correctness definition, which is that for

all keys k ∈ K, P and P−1 must be inverses of each other: For all
k ∈ K and all x ∈ X : we require P(k, P−1(k, x)) = x.

Security. The PRP security definition is almost exactly the same
as that for a PRF, except that we require that oracle access to the PRP
keyed with a random value be indistinguishable from oracle access to
a truly random permutation on the input space.

Formally, we define PRP security using a game:

Definition 1 (PRP Security Game). The game is parameterized by a
PRP P : K×X → X , and adversary A, and a bit b ∈ {0, 1}.

• The challenger samples a key k←R K.
• If b = 0, the challenger sets π(·) := P(k, ·).
• If b = 1, the challenger sets π(·)←R Perms[X]. Here, Perms is the set of all permuta-

tions on X .• Then for i = 1, 2, . . . (polynomially many times):

– The adversary A sends the challenger a value xi ∈ X .

– The challenger responds with yi ← f (xi) ∈ Y .

symmetric encryption: prps, cbc mode, aes, and des 3

• The adversary outputs a bit b̂.

For b ∈ {0, 1}, let Wb denote the probability that some adversary
A outputs bit “1” in the PRP security game parameterized with bit b.
Then define the PRP advantage of A at attacking P as:

PRPAdv[A, P] := |Pr[W0]− Pr[W1]| .

The Advanced Encryption Standard (AES) is the most widely used
block cipher today. The Data Encryption Standard (DES) was the
prior standard. Both of these were standardized by the U.S. govern-
ment. These ciphers are extraordinarily widespread. Almost every
computing device you touch today will have one or more AES imple-
mentations in its hardware or software. We will discuss the design of
DES and AES in a bit.

Review: Security against chosen-plaintext attacks (CPA security)

IMPORTANT: CPA security is a relatively weak definition of secu-
rity. In practice we use encryption systems that satisfy “authenticated
encryption”—a much stronger definition of security. The 6.1600 lec-
ture notes have lots of details on CPA security and authenticated
encryption, so look there for more information. Suffice it to say CPA-
secure encryption schemes are useful building blocks but are NOT
the encryption schemes that you would ever use alone in practice to
encrypt messages.

Definition 2 (CPA Security game). The game is parameterized by an
encryption scheme (Enc,Dec) over message spaceM, key space K,
and a bit b ∈ {0, 1}:

• The challenger samples k←R K.
• As many times as the adversary wants:

– The adversary sends the challenger
messages mi0, mi1 ∈ M. (We require

∣∣m∗0∣∣ = ∣∣m∗1∣∣.) Standard encryption systems do not
hide the length of the message being
encrypted. So, if the message spaceM
contains messages of different lengths,
our security definition requires the
adversary to distinguish the encryption
of two messages of the same length.

– The challenger replies with ci ← Enc(k, mib).

• The adversary outputs a value b′ ∈ {0, 1}.

For an adversary A and b ∈ {0, 1}, let Wb be the event that the
adversary outputs “1” in the above game. Then we say that an en-
cryption scheme E = (Enc,Dec) is CPA-secure if for all “efficient”
adversaries A, we have

CPAAdv[A, E] := |Pr[W0]− Pr[W1]| ≤ “negligible.”

Encrypting using a PRP: Switching Lemma

There many different ways to construct CPA-secure encryption
schemes using a PRP. The simplest way is via the “Switching Lemma,”

symmetric encryption: prps, cbc mode, aes, and des 4

which just says that we can use a PRP as a PRF, provided that the
block size is large enough. If we treat the PRP as a PRF, then we
can encrypt with the PRP using counter-mode encryption, as we
have already seen. This is the approach at the heart of the AES-GCM
encryption scheme, which is one of the most widely used symmetric-
key encryption schemes today. See Boneh-Shoup, Theorem 4.4, for the

full statement and proof.The important idea is

Lemma 3 (PRP Switching Lemma). Let P : K × {0, 1}n → {0, 1}n.
Then for every adversary A making at most T queries to its challenger,

PRFAdv[A, P] ≤ PRPAdv[A, P] +
T2

2n .

In other words: Say that there exists some efficient adversary A
breaking P as a PRF. Then provided that T2 ≪ 2n, the same adver-
sary can break P as a PRP with roughly the same advantage. If P is
a secure PRP, then no such adversary can exist and we can conclude
that P is secure as a PRF.

Notice that as soon as T2 ≈ 2n, the Switching Lemma becomes
vacuous: it guarantees nothing about whether a secure PRP is a se-
cure PRF. There is a good reason for this: if an adversary can query
the PRP/PRF at T ≈

√
2n points, it can efficiently distinguish a PRP

from a PRF.
To do so, the adversary evaluates the PRP/PRF at

√
2n distinct

random points. If the adversary every sees a collision—two distinct
inputs giving the same output—the adversary outputs “PRF.” Oth-
erwise, it outputs “PRP.” By the Birthday Paradox, after seeing

√
2n

input/output pairs, with a PRF, you are likely to see collisions. With
a PRP you are not.

The importance of block size. AES supports up to 256-bit encryption
keys, but its block size is fixed as n = 128 bits. As a consequence,
when using AES as a PRF, as modern systems do in many applica-
tions, it is important to remember that it is insecure to invoke AES
anywhere near 264 times using the same key.

Encrypting with a PRP: Cipher-block chaining (CBC) mode

A “mode of operation” is a method for using a block cipher to build
an encryption scheme for longer messages. There are many modes of
operation out there, but only a few widely used ones. Counter mode
we have already seen.

A second mode of operation, which is historically important but
should never be used in new systems, is cipher-block chaining (CBC)
mode, depicted in Fig. 1. This mode is also randomized: the first

symmetric encryption: prps, cbc mode, aes, and des 5

ciphertext block c[0], is a random element in the domain of the block
cipher (i.e., a nonce).

Figure 1: CBC-mode encryption. This
figure appears in the Boneh-Shoup
textbook.

As with counter-mode, it is possible to prove a statement showing
that CBC-mode encryption is CPA-secure if the underlying pseudo-
random permutation P : K × {0, 1}n → {0, 1}n is secure. The state-
ment asserts that, for every CPA adversary A seeing T encryptions of
ℓ-block messages there is a PRP adversary B running in roughly the
same time such that:

CPAAdv[A, E] ≤ 2 · PRPAdv[B, P] +
2T2ℓ2

2n .

Many legacy systems use CBC-mode encryption, while modern
systems do not. Why?

• CBC mode is not parallelizable.

• CBC mode requires evaluating the PRP in both the forward
and inverse directions. This can require more code and more

symmetric encryption: prps, cbc mode, aes, and des 6

hardware in implementations.

• CBC ciphertexts must be a multiple of the block size, which
is annoying for short messages and requires additional deli-
cate padding.

Attacking CBC mode with small block size (“Sweet32 attack”). Some pro-
tocols for legacy reasons still support CBC mode with block ciphers
using an n = 64-bit block. The security statement we have above
becomes vacuous as soon as an attacker can observe 232 encrypted
blocks of traffic.

Indeed, there is a concrete attack: after seeing enough encrypted
blocks, it is likely that two ciphertext blocks are equal: ci = cj. Since
P(k, ·) is a permutation, this means that:

ci = cj

P(k, mi ⊕ ci−1) = P(k, mj ⊕ cj−1)

mi ⊕ ci−1 = mj ⊕ cj−1

mi ⊕mj = ci−1 ⊕ cj−1.

So a collision reveals the XOR of two message blocks!
Exploiting this in practice may not be easy, is theoretically possible

given a few hundred GBs of encrypted traffic [1]. One moral is that
using a large-enough block size is important. A second moral is that
it’s important to pay attention to the concrete security guarantees that
a cryptographic construction has when you are setting parameters.

symmetric encryption: prps, cbc mode, aes, and des 7

Block ciphers used in practice

NIST publishes standards for block ciphers. There have been three
widely used ones:

Key size Block size
DES (1975) 56 bits 64 bits
3DES 168 bits 64 bits
AES (1998) 128, 192, or 256 bits 128 bits

We will see one attack that exploits small block sizes. A 128-bit
block size is the minimum.

Even-Mansour Cipher and AES

Before describing AES, let’s look at a simpler cipher design by Even
and Mansour.

Even-Mansour Cipher

On security parameter n, the Even-Mansour cipher has a 2n-bit key
and an n-bit block size.

The cipher makes use of a public invertible permutation Π : {0, 1}n →
{0, 1}n, as in ChaCha20, which we can model as a truly random per-
mutation.

The cipher is then just defined as:

PEM((k0, k1), x) := k1 ⊕Π(x⊕ k0).

You might notice that this design looks quite similar to the overall
structure of the ChaCha20 PRF.

Provided that we model Π as a truly random permutation, we
can prove that PEM is a secure PRP. That is, for every adversary A
making at most T queries to Π and at most T queries to the PRP
challenger,

PRPAdv[A, PEM] ≤ 2T2

2n .

AES

AES is an “iterated Even-Mansour cipher.” AES operates on a key of
size {128, 192, 256}. The block size is a fixed 128 bits. Unlike DES, the government uses AES

to protect classified data. They use 128+
bits for SECRET data, and 192+ bits for
TOP SECRET data.

Foreign governments who do not
trust AES and design their own ciphers
apparently often use weak homebrewed
ciphers.

Let the block size be n. AES first derives a number of “round
keys” k0, . . . , kr ∈ {0, 1}n from the input key k. Each round key is a
linear function of the input key k.

symmetric encryption: prps, cbc mode, aes, and des 8

After that, the AES cipher on input x ∈ {0, 1}n just alternates
between XORing a round key into the state and applying the permu-
tation Π:

• st← x⊕ k0

• For i = 1, . . . , r:

– st← Π(x)⊕ ki. The one detail we omit is that true AES
uses a slightly different permutation Π
in the last round. This apparently en-
ables some performance optimizations
in hardware.

• Output st.

When using 128-bit keys, the number of rounds is r = 10.

Instantiate permutation – final AES design

Now to get to the full AES construction, we just need to instantiate
the public permutation Π : {0, 1}n → {0, 1}n. It modifies the input in
three steps:

• SubBytes. Use a lookup table S : {0, 1}8 → {0, 1}8 hardcoded
into the design to replace each of the 16 input bytes with a
different one:

b1∥b2∥ · · · ∥b16 7−→ S(b1)∥S(b2)∥ · · · ∥S(b16).

This is a non-linear operation.

• ShiftRows. View the 16-byte block as a 4× 4 matrix. Perform
a cyclic shift on this matrix: shift the 0th row 0 cells to the
right, the first row 1 cell to the right, the second row 2 cells to
the right, and the third row 3 cells to the right.

• MixColumns. View the 16-byte block as a 4× 4 matrix. Multi-
ply it by a fixed matrix. The matrix multiplication in the

MixColumns step is in GF(28). If you
don’t know what that means, it doesn’t
matter.Cache attacks

Notice that a naïve implementation of the SubBytes operation in AES
requires secret-dependent memory accesses. This is one reason why
many implementers frown on using software AES implementations—
they are difficult to get right.

The issue is in implementing the S-boxes, or other table lookups,
in software. Cache-timing attacks are one serious pitfall. To explain:
because of caching, if the AES routine makes consecutive lookups
to S[1] then S[1], these will complete faster than if it looks up S[1]
then S[187]. The difference in timing—even though it is small—leaks
information about the internal state of the cipher. This can be enough
to perform devastating attacks.

ChaCha20 does not have this problem.

symmetric encryption: prps, cbc mode, aes, and des 9

DES
Reference note: This discussion is just
a restatement of the descriptions of DES
and AES in the Boneh-Shoup textbook.
Consult their book for details.

With explosion of potential commercial applications of cryptography,
the predecessor to NIST published the “Data Encryption Standard”
(DES) in 1975. The government never approved it for use in classified
applications, as the 56-bit key length was too short even on the day
the standard was published. Diffie and Hellman at the time pointed

out that 56-bit keys were unacceptably
short. Their analysis was based on
projections about cheap computation
would get and how quickly. They
presciently proposed that using 128-bit
keys would be prudent.

As far as I know, the best known attack on DES today is Matsui’s
linear cryptanalysis (1993), which recovers the key from 247 input-
output pairs in a known-plaintext attack.

As with AES, we can view the design of DES as building a block
cipher from a smaller idealized primitive. In AES, the idealized prim-
itive was a public random permutation. In DES, the idealized primi-
tive is a pseudorandom function.

Feistel Network: Building a PRP from a PRF.

The core of DES is a slick idea, proposed by Horst Feistel, for build-
ing a PRP out of a PRF. The neat property of the Feistel network is
that it is invertible: it turns a random function—not invertible—into
an efficiently invertible random permutation.

The Feistel network builds a PRP out of a pseudorandom func-
tion by applying a simple transformation many times (over many
“rounds”). One round of Feistel network, when instantiated with a
PRF F : K× {0, 1}n → {0, 1}n, is a keyed permutation

P : K× {0, 1}2n → {0, 1}2n,

defined as:
πF(k, (x, y)) := (y, x⊕ F(k, y)).

The initial and final bit shuffling in DES
have no apparent effect on cipher’s
security. Boneh-Shoup speculates that
the initial and final permutations were
to slow down DES implementations
in software relative to hardware. This
is consistent with the widespread
(and somewhat confirmed) view that
DES was designed to be breakable
by governments but good enough for
commercial use.

One round of the Feistel network is not enough to construct a PRP
from a PRF, but many rounds are. The ℓ-round Feistel network is the
construction that applies πF many times with independent keys.

Pℓ((k1, . . . , kℓ), (x, y)) := πF(kℓ, πF(k2, πF(k1, (x, y))) · · ·)

In particular, Luby and Rackoff proved that if F is a secure pseu-
dorandom function, then the three-round Feistel network P3 instanti-
ated with F is a secure PRP. In particular, for every efficient adversary
A attacking P3 as a PRP, there is an efficient adversary B as a PRF
such that:

PRPAdv[A, P3] ≤ 3 · PRFAdv[B, F] +
Q2

N
+

Q2

2N2 .

symmetric encryption: prps, cbc mode, aes, and des 10

Figure 2: Feistel network

symmetric encryption: prps, cbc mode, aes, and des 11

Instantiate the round functions – final DES construction

DES uses a 56-bit keyspace (|K| = 256) and a 64-bit block size (2n =

64).
The DES cipher on input x ∈ {0, 1}2n is essentially just a 16-round

Feistel network. (The only difference is that DES applies a fixed per-
mutation of the input bits before and after the Feistel network.) The
Luby-Rackoff result does not say anything about the security of DES
since the functions that DES applies at each round are not pseudo-
random functions at all: the keys are short enough to brute force, for
one.

The round function. The last step is to instantiate the PRF used in the
Feistel network with a concrete function.

To do so, DES first generates 16 “round keys” k1, . . . , k16 ∈ {0, 1}48,
each derived from a subset of the bits of the 56-bit DES key k.

The round function F(ki, ·):
• computes the initial state as a linear function of the round

key and its input,

• splits the state into six-bit chunks and applies a different non-
linear function (called an S-box for “substitution”) to each
using a lookup table, and

• permutes the bits of the state.

The only non-linear part of the cipher is the S-boxes. It turns out that
if you pick the S-boxes at random, the cipher becomes very weak.
The DES S-boxes are constructed to have a bunch of nice statistical
properties that prevent attacks. (For example, no output bit is not
close to a linear function of the input bits.)

Instantiating the ideal DES construction with these 16 keyed round
functions gives the final construction.

Lessons?

• Many rounds of a simple operation.

• Avoiding all of the known attacks takes a lot of care. Choos-
ing parameters at random does not work.

Linear cryptanalysis
Note: Again, these notes are mostly
a rephrasing of the content in Boneh-
Shoup. Look there for the details.

The cryptanalysis of block ciphers is an art on its own. I will try to
sketch the idea behind one sort of attack (based on the description
of Matsui’s attack as summarized in the Boneh-Shoup book), which
may give you the flavor of how these attacks work.

symmetric encryption: prps, cbc mode, aes, and des 12

Let P be a PRP in which inputs, outputs, and keys are all n-bit
strings. Further, let say that you find that there is some bias in the
relationship between the key bits, input bits, and output bits.

A linear relation on the PRP P exists if there are sets of bit positions
Bx, By, Bk ⊆ [n] such that

Pr

[
x[Bx]⊕ y[By] = k[Bk] :

x ←R {0, 1}n

y← P(k, x)

]
≥ 1

2
+ ϵ,

where ϵ is noticeable.
In a truly random permutation, P(k, x) is independent of x, so the

bias ϵ = 0. In a concrete PRF, the bias can be non-zero.
The idea of the attack is to gather a very large number of input-

output pairs: (x1, y1), . . . , (xT , yT).
Then if we look at all of the input/output XORs, the linear relation

tells us that the resulting values will be slightly biased towards the
value of the Bkth bit of the key:

(x1[Bx]⊕ y1[By]), . . . , (xT [Bx]⊕ yT [By]).

The idea is then to take the majority of these T values and use that
value as our guess at the XOR of a subset of the key bits k[Bk].

The Chernoff bound tells us that our guess will be right with prob-
ability at least 1− exp(Tϵ2/2). So if we have a linear relation with
bias ϵ, we get a bit of information about the key with probability well
over 1/2 after seeing something like T = 4/ϵ2 input/output pairs.

In the case of DES, one linear relation depends on 12 bits of the
secret key. If you have additional linear relations, you can use these
to recover the full key. See Boneh-Shoup 4.3.1 for details.

References

[1] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical
(in-)security of 64-bit block ciphers: Collision attacks on HTTP
over TLS and OpenVPN. In ACM CCS, 2016.

	Outline
	Pseudorandom permutations and block ciphers
	Review: Security against chosen-plaintext attacks (CPA security)
	Block ciphers used in practice
	Even-Mansour Cipher and AES
	DES
	Linear cryptanalysis

