
Symmetric Encryption: PRFs, Counter mode, and
ChaCha20
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 3 (February 10, 2025)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Logistics

• Due Friday: Pset 1

• Due Friday: Post a project idea on Piazza

Outline

• Reminder: Definition of a PRF

• Reminder: CPA-Secure Encryption

• ChaCha20

symmetric encryption: prfs, counter mode, and chacha20 2

Why study the design of symmetric-key primitives?

This week, we are going to study symmetric-key cryptographic prim-
itives.

• These are arguably the most important primitives in the
practice of crypto.
They are used in essentially every device you own that uses
encryption.

• The goal is NOT for you to write your own implementations
or design your own ciphers. The goal is for you to have a
deeper understanding of how encryption systems work in
practice.

Review: Pseudorandom functions

Definition
This discussion of PRFs is copied
almost verbatim from our 6.1600 lecture
notes.

Syntax A pseudorandom function (PRF) is defined over a keyspace K,
and input space X and output space Y is a function F : K ×X → Y .
For concreteness, we can think of X = Y = {0, 1}n.

If we want to be completely formal, we parameterize the key space
(also possibly the input/output spaces) by a security parameter λ.
We then write F = {Fλ}λ∈N, where, for each λ ∈ N, the function Fλ

has type Fλ : Kλ ×Xλ → Yλ.

Security Informally, a pseudorandom function must “look like” a
random function in the sense that for secret k ←R K, it is infeasible to
distinguish F(k, ·) from a truly random function f : X → Y . The style of definition here follows the

(free!) Boneh-Shoup textbook. Check
it out for much more detail on these
topics.

Formally, we define PRF security using a game:

Definition 1 (PRF Security Game). The game is parameterized by a
PRF F : K×X → Y , and adversary A, and a bit b ∈ {0, 1}.

• The challenger samples a key k←R K.
• If b = 0, the challenger sets f (·) := F(k, ·).
• If b = 1, the challenger sets f (·)←R Funs[X ,Y]. Here, Funs is the set of all functions

from X to Y .• Then for i = 1, 2, . . . (polynomially many times):

– The adversary A sends the challenger a value xi ∈ X .

– The challenger responds with yi ← f (xi) ∈ Y .

• The adversary outputs a bit b̂.

For b ∈ {0, 1}, let Wb denote the probability that some adversary
A outputs bit “1” in the PRF security game parameterized with bit b.
Then define the PRF advantage of A at attacking F as:

PRFAdv[A, F] := |Pr[W0]− Pr[W1]| .

symmetric encryption: prfs, counter mode, and chacha20 3

Definition 2 (Pseudorandom function). A function F : K×X → Y is
a pseudorandom function if, for all “efficient” algorithms A,

PRFAdv[A, F](λ) ≤ “negligible.”

The adversary that guesses a random bit has advantage 0. This
definition asserts that no efficient adversary can do much better than
that.

There are two views on this definition:

• In theory, we parameterize everything by a security parame-
ter λ, which you can think of the length of the secret PRF key.
We require the PRF algorithm and adversary to run in time
polynomial in λ, and we define “negligible” to be a function
that is negligible in λ.

• In practice, we fix keysize to some constant—often 128 or 256

bits. We require the PRF algorithm to be “fast enough,” we
aim to defend against attackers than run in time (say) 280,
and we say define “negligible” to be some small constant,
such as 2−64.

Reminder If P = NP then pseudorandom functions do not exist.
To explain: A poly-time algorithm for NP problems can efficiently

find a satisfying assignment to a Boolean circuit. To use a circuit-SAT
solver to break a PRF, an attacker can query its oracle in the PRF
security game on a few points x1, x2, . . . , getting answers y1, y2,
The attacker then uses it’s circuit-SAT solver to find a PRF key k that
is a satisfying assignment to the circuit

C(k) =
{

y1 = F(k, x1) ∧ y2 = F(k, x2) ∧ . . .
}

.

If such a key k exists, then almost certainly the attacker is in the PRF
world. Otherwise not.

This discussion implies that the existence of secure a pseudoran-
dom functions implies that P ̸= NP at least.

Symmetric-key assumptions

Some of crypto is based on “nice” assumptions. For example, the
Rabin cryptosystem is based on the hardness of factoring. This is a
“win-win” situation: either we have a secure cryptosystem, or we get
a factoring algorithm (which would be exciting).

We could base our block ciphers on “nice” assumptions, such as
the assumption that factoring is hard, but the resulting cryptosystems
would be too slow. Instead, we design symmetric-key cryptosystems

symmetric encryption: prfs, counter mode, and chacha20 4

based on ad-hoc assumptions, which cryptanalysts then spend many
years trying to break.

For example, we just assume that AES is a secure block cipher—
there is no clean mathematical assumption to which we can relate
its security. At the same time, most cryptographers I know have
much more confidence that AES is a secure PRF than that factoring
or discrete log is hard.

The plan for evaluating the security of new primitives is:

• Try to break the new primitive with all known attacks.

• Run competitions and to get researchers to break each other’s
cryptosystems.

• After a design has withstood a few years of scrutiny, assume
that it’s good enough.

Having said that, the difficulty of cipher design at this point often
is not security, but getting good performance on all sorts of different
hardware.

Encryption

Review: Security against chosen-plaintext attacks (CPA security)

An encryption scheme (Enc,Dec) is a pair of algorithms defined over
a common key space K, message spaceM, and ciphertext space C
with syntax: Enc : K×M→ C and Dec : K× C →M.

To be useful an encryption scheme must be correct and secure.
chosen-plaintext attacks, which I will not define formally. CPA

security is a relatively weak definition of security. In practice we use
encryption systems that satisfy “authenticated encryption”—a much
stronger definition of security. The 6.1600 lecture notes have lots of
details on CPA security and authenticated encryption, so look there
for more information. Suffice it to say this the CPA-secure encryption
scheme is a useful building block but is NOT one that you would
ever use in practice to encrypt messages.

Definition 3 (CPA Security game). The game is parameterized by an
encryption scheme (Enc,Dec) over message spaceM, key space K,
and a bit b ∈ {0, 1}:

• The challenger samples k←R K.
• As many times as the adversary wants:

– The adversary sends the challenger
messages mi0, mi1 ∈ M. (We require

∣∣m∗0∣∣ = ∣∣m∗1∣∣.) Standard encryption systems do not
hide the length of the message being
encrypted. So, if the message spaceM
contains messages of different lengths,
our security definition requires the
adversary to distinguish the encryption
of two messages of the same length.

– The challenger replies with ci ← Enc(k, mib).

• The adversary outputs a value b′ ∈ {0, 1}.

symmetric encryption: prfs, counter mode, and chacha20 5

For an adversary A and b ∈ {0, 1}, let Wb be the event that the
adversary outputs “1” in the above game. Then we say that an en-
cryption scheme E = (Enc,Dec) is CPA-secure if for all “efficient”
adversaries A, we have

CPAAdv[A, E] := |Pr[W0]− Pr[W1]| ≤ “negligible.”

Encrypting with a pseudorandom function: Counter mode

Last time, Yael demonstrated how to encrypt messages using a pseu-
dorandom function. Say that we have a pseudorandom function
F : K× {0, 1}n → {0, 1}n. The encryption scheme is is called counter-
or CTR-mode encryption. The encryption scheme is parameterized
by a value ℓ ∈ N, which determines the length of messages that the
scheme can encrypt.

Then the encryption scheme is defined over:

• Key space K

• Message space {0, 1}nℓ

• Ciphertext space {0, 1}nℓ

The algorithms are:

Enc(k, (m1, . . . , mℓ)) :

• Sample r ←R {0, 1}n. // r is called a “nonce”

• Output
(r, F(k, r)⊕m1, F(k, r + 1)⊕m2, . . . , F(k, r + ℓ− 1)⊕mℓ).

Dec(k, (r, c1, . . . , cℓ)) :

• Output
F(k, r)⊕ c1, F(k, r + 1)⊕ c2, . . . , F(k, r + ℓ− 1)⊕ cℓ).

See the Boneh-Shoup book, Theorem
5.3, for a formal proof of this.The sort of security statement you can prove about counter-mode

encryption is that for all adversaries A making at most T encryption
queries of length-ℓ messages, there is a PRF adversary B (running in
roughly the same time as A) such that

CPAAdv[A, E] ≤ 2 · PRFAdv[B, F] +
2T2ℓ

2n .

Thus, if we instantiate counter-mode encryption with a secure PRF,
we get a CPA-secure encryption scheme.

The idea of the proof is to first imagine swapping out the PRF
with a truly random function. If the PRF is secure, then making this
switch cannot change the adversary’s advantage by too much. Then,
provided that the encryptor never re-uses a nonce, the adversary is
just seeing messages XORd with truly random values.

symmetric encryption: prfs, counter mode, and chacha20 6

If we believe the underlying PRF to be secure, then we believe that
PRFAdv[B, F] to be “negligible” for all efficient algorithms B. Then as
long as T2ℓ≪ 2n, we expect the encryption scheme to be CPA secure.

What happens if T2ℓ is roughly equal to 2n? If you think about
it for a bit, you may be able to see that the encryption scheme is
actually broken: there is an attack on CPA security!

Parallel implementation. Counter-mode encryption lends itself to
parallel implementation on multicore machines: it is possible for an
encryptor or decryptor to decrypt many blocks of a message in paral-
lel. Since modern machines often have 10+ cores, exploit parallelism
is critical for modern cryptosystems. (Thirty years ago, multicore
architectures were much less common and so parallelism was not as
much of a concern.)

Stateful counter mode. It is not actually important that the encryption
nonce r be random—only that the encryption scheme never reuse
the value F(k, r) to encrypt two distinct messages. In applications in
which the sender and receiver can share state, they can start with the
nonce r = 0 and can increment it appropriately after each message
sent. This avoids the need to send r along with the ciphertext, at the
cost of having to keep synchronized state.

Why not build an encryption scheme directly? Here, we started with a
small primitive—a pseudorandom function with a fixed input and
output size—and used it to construct a bigger one—an encryption
system for long messages. Why not just construct an encryption
scheme for large messages directly? Why start with a pseudorandom
function?

A theoretical reason is that we want to understand what the mini-
mal assumption we need to make to construct a cryptographic object.

A practical reason is that cryptanalysis is extremely time consum-
ing and costly. Being able to build a large array of tools from a very
small set of primitives lets the cryptanalysts focus their efforts on just
these few very important primitives.

STRETCH BREAK?

ChaCha20: Example of a PRF used for counter-mode encryption

ChaCha20 is a stream cipher that is used in the TLS protocol that
secures your HTTP connections. ChaCha20 encrypts messages essen-
tially by constructing a pseudorandom function and then using it in
counter mode.

symmetric encryption: prfs, counter mode, and chacha20 7

The ChaCha20 PRF uses a 256-bit key and a 128-bit input and
outputs a 512-bit value:

Fchacha : {0, 1}256 × {0, 1}128 → {0, 1}512.

Let’s see how this particular PRF is constructed. Like many
symmetric-key primitives, ChaCha20 is itself built from a lower-
level primitive—in this case a public permutation on {0, 1}512. If were
to model the public permutation as a truly random object, we could
prove (in this idealized model) that ChaCha20 is a secure PRF. The
“leap of faith” that we need to make is that of course the public per-
mutation in the ChaCha20 design is not a truly random object (that
would take roughly 2512 bits to describe)—it has a very short and
simple implementation.

The PRF defines a function pad(k, x) that maps the key k, the input
x, and 128-bits worth of constants, to a 4× 4 matrix of 32-bit values.
The PRF construction also defines a permutation Π : {0, 1}512 → The constants spell expand 32-byte k.

This an example of a “nothing-up-my-
sleeve” number.

{0, 1}512.
The PRF output is then:

Fchacha(k, x) := pad(k, x)⊕Π(pad(k, x)) ∈ {0, 1}512.

The permutation Π. The only thing left to specify is the permutation
Π. The core is a function quarterRound that takes as input 4 32-bit
values and outputs 4 32-bit values. The function for Salsa (slightly
simpler than ChaCha) is:

quarterRound(a,b,c,d):

b ^= (a + d) <<< 7;

c ^= (b + a) <<< 9;

d ^= (c + b) <<< 13;

a ^= (d + c) <<< 18;

where <<< is a bitwise left-rotate operation. ChaCha20 is called an ARX cipher,
since its core consists of Add, Rotate,
and XOR operations.

Viewing the input to Π as a 4× 4 matrix of 32-bit values, the per-
mutation Π applies the quarter-round function to the columns of the
matrix:

0 | 1 | 2 | 3

4 | 5 | 6 | 7

8 | 9 | 10 | 11

12 | 13 | 14 | 15

and then to the shifted columns:

0 | 1 | 2 | 3

5 | 6 | 7 | 4

10 | 11 | 8 | 9

15 | 12 | 13 | 14

symmetric encryption: prfs, counter mode, and chacha20 8

The permutation iterates this function 10 times.
Notice that an implementation can apply the 4 instances of the

quarter-round function in parallel. Moreover, these are SIMD compu-
tations, for which many CPUs have special instructions.

In addition, there are no secret- or data-dependent memory ac-
cesses. This is critical for security to avoid timing and cache attacks,
in which an attacker learns bits of information about a victim’s se-
crets via how long memory accesses take to complete.

References

	Outline
	Why study the design of symmetric-key primitives?
	Review: Pseudorandom functions
	Symmetric-key assumptions
	Encryption
	STRETCH BREAK?
	ChaCha20: Example of a PRF used for counter-mode encryption

