
Massachusetts Institute of Technology
6.5610: Applied Cryptography February 19, 2025
Henry Corrigan-Gibbs and Yael Tauman Kalai Due: February 28, 2025 at 4:59pm

Problem Set 2

Please submit your problem set, in PDF format, on Gradescope. Each problem should be in a separate page.
You are to work on this problem set in groups. For problem sets 1, 2, and 3, we will randomly assign the

groups for the problem set. After problem set 3, you are to work on the following problem sets with groups
of your choosing of size three or four. If you need help finding a group, try posting on Piazza. See the course
website for our policy on collaboration. Each group member must independently write up and submit their
own solutions.

Homework must be typeset in LATEXand submitted electronically! Each problem answer must be provided
as a separate page. Mark the top of each page with your group member names, the course number (6.5610),
the problem set number and question, and the date. We have provided a template for LATEX on the course
website (see the Psets tab at the top of the page).

Problem 2-1. LWE

Recall that the LWE assumption, with respect to parameters n,m, q, χ asserts that

(A, sA+ e) ≈ (A,u)

where A←R Zn×m
q , s←R Zn

q , e← χm, and u← Zm
q .

For each of the following parts add a short explanation for your answer.

(a) Consider a variant of the LWE assumption where the first n/2 rows of A are set to 0. Is this
assumption broken or does it remain secure under LWE (with some parameters)?

(b) Consider a variant of the LWE assumption where the first column of A is set to 0. Is this assumption
broken or does it remain secure under LWE (with some parameters)?

(c) Consider a variant of the LWE assumption where A is chosen random in Zn×m
q subject to the last

column being the sum of the first two columns. Is this assumption broken or does it remain secure
under LWE (with some parameters)?

(d) Consider a variant of the LWE assumption where s is chosen randomly in Zn
q subject to sn =

∑n−1
i=1 si.

Assume that q = poly(n). Is this assumption broken or does it remain secure under LWE (with some
parameters)?

(e) Extra credit. The same problem as part (d) except that the modulus is q = 2n.

Problem 2-2. Message Authentication Codes

Message Authentication Codes (MACs) are used to verify the integrity of messages that are sent (i.e. MACs
prevent an adversary from tampering with a message). A MAC is associated with a message space M =
{Mλ}λ∈N. It takes as input a secret key k ← {0, 1}λ and a message m ∈ Mλ, and outputs a tag, which
should be thought of as a “proof” of the authenticity of m. Formally, a MAC is said to be secure if any
poly-time adversary A wins the following game with negligible probability:

•Challenger samples MAC key k
R←− {0, 1}λ.

•The following is repeated polynomially many times:

–Adversary sends any message mi ∈M to the challenger

–Challenger responds with ti = MAC(k,mi)

•Adversary sends the challenger a message-tag pair (m∗, t∗)

6.5610 : Handout 1: Problem Set 2 2

•Adversary wins if MAC(k,m∗) = t∗ and m∗ /∈ {m1,m2, ...}. That is, the adversary wins if it can
construct a valid message-tag pair for a message that has not already been sent.

We often use PRFs to construct MACs (even though MACs are not required to be pseudo-random). This
can be done by taking any PRF F : {0, 1}λ × {0, 1}λ → {0, 1}λ, and setting the MAC to be:

MAC(k,m) = F (k,m).

Notice that this is a secure MAC for the message space Mλ = {0, 1}λ. In what follows, we examine a few
possible MAC constructions that use the PRF F to MAC longer messages. For simplicity, think of messages
whose length is a multiple of λ. For each of the following constructions, state whether it is secure, and if it
is not secure then provide an attack. In what follows m = m1||m2||...||mn ∈ {0, 1}n·λ and each mi ∈ {0, 1}λ.

(a) MAC(k,m) = (F (k,m1), F (k,m2), ..., F (k,mn)).

(b) MAC(k,m1||m2||...||mn) = F (k,m1) ⊕ F (k,m2) ⊕ . . . ⊕ F (k,mn), which means that we apply the
PRF on every block and xor the results together.

(c) MAC(k,m) = F (MAC(k,m1||m2||...||mn−1),mn) and MAC(k,m1) = F (k,m1). This is a recursive
function where the result of the previous block’s MAC serves as the key for the next block.

Problem 2-3. OCB Mode

We want to have encryption schemes that achieve both confidentiality and integrity. This may be achieved
by combining an encryption scheme that is CPA secure, as described in lecture 3, with a MAC that satisfies
EUF-CMA. In this problem, we explore a block cipher-based mode of operation which achieves both with
some additional desirable properties. Offset codebook mode (OCB mode) provides authenticated encryption,
meaning that the scheme achieves both confidentiality and integrity.

An older version of the OCB encryption algorithm Encrypt(N,M) is described by the diagram below. In
this construction, we assume that both every message block and tag have length n for simplicity.

•N is a nonce, and M is the message.

•Ek : {0, 1}n → {0, 1}n is a block cipher (e.g. AES-128).

•len(S) : {0, 1}∗ → {0, 1}n is a function which outputs an n-bit encoding of the length of input bitstring
S.

•checksum = M1 ⊕M2 ⊕ · · · ⊕Mm.

•fL(i) is a function which outputs an n-bit string. We can ignore the details of fL for this problem.

For now, ignore the implementation of Init(N) and consider L to be a constant.

6.5610 : Handout 1: Problem Set 2 3

(a) Describe the decryption algorithm Decrypt(N,C, T) for OCB mode. To decrypt correctly, it must be
that both the ciphertext C = C1∥ . . . ∥Cm decrypts to the correct message and T is a valid tag.

(b) In lecture, we saw two other methods for encryption. (1) Counter mode to encrypt with a PRF and
(2) CBC mode to encrypt with a PRP. For each method, name one advantage of using OCB mode in
comparison to it.

We now explore a message forgery attack on this construction. After seeing one encryption of a chosen
message, an adversary is able to construct a valid tag on a different ciphertext. In the first step, the
adversary asks for an encryption of (N,M) where N is any nonce and M ∈ {0, 1}2n defined by M = M1∥M2

where M1 = len(0n) and M2 ∈ {0, 1}n.
This encryption will give ciphertext C = C1∥C2 where

C1 = fL(1)⊕ Ek(fL(1)⊕ len(0n))

C2 = M2 ⊕ Ek(fL(2)⊕ len(0n))

(c) Complete the attack. That is, given the above C, construct ciphertext C ′ and tag T ′ such that the
decryption algorithm will accept (N ′ = N,C ′, T ′). Hint: C ′ will only be n bits long.

(d) We now describe how L is constructed below. For the rest of this problem, suppose N is a counter.
That is, every time we call the encryption function, we increment N = 1, 2,

Init(N)→ L :

• Bottom← N [−6 :]

• Top← N [: −6]∥constant padding
• Ktop ← Ek(Top)

• Stretch← Ktop∥ (Ktop ⊕ (Ktop << 8))

• L← Stretch << Bottom[0 : 128]

After how many calls does Bottom need to be recomputed? Top? Ktop?

(e) Using the previous part, explain why the amortized cost to compute Init is low.

Problem 2-4. Slide attack

6.5610 : Handout 1: Problem Set 2 4

In the first pset, we see how one can break a single-round cipher with a birthday attack. What if we increase
the number of rounds? The encryption is much more complex, and the birthday attack no longer works, we
must be secure, right? The answer is “No”. In this problem, you are going to break a single-key 300-round
Even-Mansour encryption scheme.

Let π : {0, 1}n → {0, 1}n be a random permutation and let k ∈ {0, 1}n be the key. Define f(x) = π(x)⊕ k,
the encryption is:

Enc(m) = f300(m⊕ k)

where f i means applying the function i times. In total, we apply the permutation π 300 times and xor with
the key 301 times. The slide attack takes advantage of the repeating pattern of the encryption scheme: if
two messages are “one step” away, then the ciphertexts are also “one step” away.

From the figure, we can see that if m1 = π(m0 ⊕ k), then c1 = π(c0) ⊕ k. We call such a pair (m0,m1) a
sliding pair.

(a) Find two functions f and g such that f(m0, c0) = g(m1, c1) for any sliding pair. Similarly to pset 1,
both functions can include π (and π−1) but not k.

(b) Sample two random functions f : [N] → [N], g : [N] → [N], and t random inputs m1,m2, . . . ,mt.
Prove that if t = Θ(

√
N), there is a constant probability that f(mi) = g(mj) for some i, j. (You

don’t have to find the best constant.)

Given the information above, we can find a sliding pair with sample size as large as that of a normal birthday
attack. Now we outline the attack:

1.Collect many pairs of (mi, ci = Enc(mi)).

2.Find i, j such that (mi,mj) is a sliding pair.

3.Recover the secret key from (mi,mj).

(c) On Piazza, you can find a zip file pset2.zip that contains two files:

• main.py generates a random key and 220 ciphertexts. It is for you to understand how the data
was generated.

6.5610 : Handout 1: Problem Set 2 5

• data.txt has the ciphertexts generated by main.py and it is not human-readable. You should
use the helper function to read the data.

• lib.py has the implementation of encryption and a helper function to read the data.

The goal is to find the secret key. Note that using the read data in lib.py, you get an array of size
220, and the i-th element is the encryption of the number i (0-indexed). Put your secret key as the
answer, and submit the code to Gradescope.

