
6.5610 Final Project Report: Distributed Private File Downloads

Mario Mrowka
mrowkam@mit.edu

Patrick Whartenby
pwartenb@mit.edu

Andrew Zhao
aazhao@mit.edu

Abstract

We propose a distributed file download system
that uses the power of Private Information Re-
trieval (PIR) to privatize peer-to-peer (P2P) file
downloads. Users can privately download files
from a large database privately, ensuring that
peers can not determine what file they desire.
Our system leverages ideas from BitTorrent and
SimplePIR (Henzinger et al., 2022) to prevent
peers in the network from gaining information
about what other users are attempting to down-
load. Though there are ethical concerns about
these platforms, we feel that increased privacy
in file sharing is a net positive for users on an
insecure internet.

1 Introduction

P2P systems utilize distributed resources to execute
a function such as file sharing in a decentralized
manner. A notable example of a P2P system is Bit-
Torrent, where users can upload and download files
between users. Our project applies a PIR scheme
to ensure that when peer A queries another peer B,
peer A reveals nothing about what they are search-
ing for (Kushilevitz and Ostrovsky, 1997). We
combine these concepts to distribute some of the
high computational and communication costs as-
sociated with PIR across a network of users. Our
system ensures users can continue to query ser-
vices without revealing what content they want to
download.

The motivation for our approach comes from two
papers. The first is “One Server for the Price of
Two: Simple and Fast Single-Server Private Infor-
mation Retrieval,” which describes SimplePIR, the
fastest single-server private information retrieval
scheme known to date (Henzinger et al., 2022).
The second is “Can Peer to Peer (P2P) Replace
Direct Download for Content Distribution,” which
explains how P2P networks can deliver paid digital

content instead of direct-download models (Sher-
man et al., 2007). When combined with PIR, we
achieve a distributed file download network that
provides the same security of direct downloads and
the privacy of a PIR scheme.

In our scheme, users share pieces of files within a
peer-to-peer network. Users can make PIR queries
to determine what files each peer has and make
separate PIR queries to download the respective
files.

2 Related Work and Background

2.1 BitTorrent

The inspiration for the file download system comes
from the BitTorrent protocol initially released in
2001 (Cohen, 2001). The system attempts to re-
place the need for servers to facilitate large down-
loads by breaking files up into small pieces called
chunks. Once a peer has received a chunk, they
become a source for that portion of that file.

To upload files to the network, a source peer
breaks the file into several identically sized chunks.
The size of each chunk is arbitrary, but most imple-
mentations use something between 32 kB and 26
MB. The course peer then hashes each chunk and
creates a .torrent file with the hashes. The hashes
ensure that other users can verify the legitimacy
of the data they receive. Along with the hash of
the piece, the .torrent file also contains a URL to a
tracker instance. Peers can query the tracker to get
the location of other peers. ”Seeders” are peers that
hold the entirety of a file and continue to participate
in the network. As more users download pieces of
content, they can also share the newly downloaded
chunks with the rest of the network, allowing for
a more efficient exchange of information (Cohen,
2001).

One of the most significant drawbacks of the sys-
tem is the amount of information leaked to peers.



To connect to the network or download data, every
other party in the network must know what .tor-
rent file they are using, and thus learn what content
they want to download. Privacy concerns are el-
evated when considering that these networks are
frequently used to distribute copyrighted content
or to avoid censorship.

Figure 1: Example scenario illustrating our system. (1):
Peer A makes a PIR query to the tracker to request a list
of peers with chunks of a file. The tracker returns peers
B and C. (2): Peer A requests Peer B and C for the file
chunks. Peers B and C return the file chunk.

2.2 SimplePIR

We model our PIR scheme after SimplePIR, de-
veloped by Henzinger et al. (2022). Similar to
the scheme described in class, this system stores a
size N database in a

√
N ×

√
N matrix, referred

to from here forward as db (Kushilevitz and Os-
trovsky, 1997). Each entry has a corresponding
column i and row j. To access the database, the
client builds a vector of all 0s and sets the index
corresponding to the column of the desired entry
to 1. To ensure the privacy of the query, the system
relies on the LWE assumption under parameters n,
q, and χ. Using the secret key version of the LWE
encryption scheme provided by Regev (2009), the
query vector is encrypted. The equation for the
encryption of a query vector u is:

Enc(u) = (A,As+ e)

which is the the Regev encryption that is zero
everywhere but a 1 at index i and 0 everywhere
else for some LWE matrix A ∈ Z

√
N×

√
N , secret

s ∈ Z
√
N , and error e ← χ

√
N (Henzinger et al.,

2022)
Once encrypted, the client sends the query to

the server, which multiplies it by db and returns
the resulting vector. Finally, to recover the answer

to the query, the client parses the correct row of
the query and decrypts it with a standard LWE
decryption algorithm, shown below to recover db·u,
which is the i-th column of the database.

3 System Design

Our scheme is designed as a way to add privacy
to distributed file download platforms. It also pro-
vides a novel use case for PIR schemes. Thus far
implementations of this idea remain held back by
high communication and computation costs. We
found that splitting up the queries costs across a
P2P network decreases the computational burden
on any one server, at the cost of higher communi-
cation bandwidth. While the communication cost
of downloading these files is a concern, we believe
that clients are willing to pay the price. One exam-
ple of where this already exists in practice is the
Tor network. Tor users accept that the connection
will be slower in exchange for not having their IP
address linked to certain sites. Our system follows
a similar logic, as the belief is users will accept the
longer time it takes to download files in exchange
for privacy regarding what they download.

3.1 System Setup

The setup for our system begins when a source peer
decides on a set of files they want to share. The
source then divides files into chunks and hashes
each of the chunks. After converting eh chunks
into the database form described in section 3.3, the
source creates a tracker URL, and uploads their
endpoint to the site. To allow others to join the
network they upload a .torrent file with the tracker
URL and the hashes of chunks to the internet.

3.2 Peer Discovery and Initial Query

To first discover peers in the network, clients visit
the public tracker URL. The URL is discoverable
from the .torrent file new users can get from the
internet. The tracker provides information regard-
ing what peers are a part of the network. After
querying the tracker, clients can query the peers to
determine what files they hold. A peer will not con-
nect to the tracker again, unless the vast majority of
peers it is connected to have disconnected from the
network. Following the initial connections to the
tracker URL, new peers are discovered by talking
to query other known peers in the network.

The initial query to a peer is done using Sim-
plePIR. Each peer holds a database containing en-



tries that show peers they are connected to, which
chunks they hold as well as the data for those
chunks. The exact structure of the database is ex-
plained further in the next section. The security
property of SimplePIR ensures that a query for the
list of chunks that the database holds is indistin-
guishable from a query for a chunk that contains
file data and a query for the neighboring peers (Hen-
zinger et al., 2022). This provides a unique “plausi-
ble deniability” property in that even the owner of
the files can not determine if a peer is downloading
files at all, just asking to see what files they hold or
trying to discover new peers. The list of files also
contains the location of each file in the database to
ensure future queries are made to the correct place.

3.3 Database Structure and File Download

Figure 2: P2P Chunk Structure with Chunk Size of 4
columns

Our network’s database structure works to limit
the number of queries needed to determine what
files a user has and to download said files. The pri-
mary observation this relies on is that when a PIR
query is made an entire column is returned rather
than a specific index in the matrix. To take advan-
tage of this, we arrange the database, such that the
files are stored in the columns. The database is

grouped into “chunks,” all of which are the same
size. Each chunk contains multiple columns and
multiple chunks make up the entire file. Figure 2
shows an example of our database structure. The
first chunk holds a list of peers that the person
knows about. The second chunk in the database
stores information about what files the database
holds and which chunks make up those files. Even
though a user’s first query to the system is likely
to request the second chunk, neither an observer
nor the owner of the database can tell because
the Regev encryption scheme used in SimplePIR
provides chosen-plaintext attack (CPA) security
(Regev, 2009). This ensures that, without the se-
cret key, no one can tell the difference between a
query for the first chunk and a query for any other
chunk. An adversary is unlikely to have the abil-
ity to make any assumptions besides this because
future queries could be for the list of peers, list of
files, or file data. All three of these are indistin-
guishable as mentioned above.

To download an entire chunk, a user makes multi-
ple queries for consecutive columns, as SimplePIR
only returns one column at a time. Once a peer
completes their download they can decrypt the re-
spective columns to recover the full chunk. They
now have the option to either host the chunk on the
network themselves or not. They are not required
to host the file as this would take away from the pri-
vacy as someone hosting the file has downloaded it
at some point. Additionally, by waiting for a peer
to upload a new file, adversaries can see decryp-
tions of PIR queries opening up the possibility of
chosen-ciphertext attacks, which SimplePIR does
not protect against. To reduce this vulnerability
when peers choose to host files they downloaded
from other peers, we recommend switching the
secret key used for PIR after each query.

4 Analysis

4.1 Correctness

By using an existing PIR scheme, we rely on the
correctness of SimplePIR to ensure that the recon-
structed value is equal to the desired value from the
database (Henzinger et al., 2022). The SimplePIR
paper, linked in the references section, provides a
detailed proof. We rely on the BitTorrent protocol,
specifically the hashing of chunks, to guarantee the
reliable reconstruction of files.



4.2 Security

The system is secure if no parties can discover the
file another peer desires to download. We define
a file to be a subset of chunks uploaded by the
original seed peer. We also assume an honest but
curious tracker system, and non-collusion between
peers. We define a “desired file” to be the file the
peer originally wanted, not any chunks/files that
are downloaded to help with seeding.

We also note that our system has inherent limita-
tions that we considered while creating this defini-
tion. For example, our system does not guarantee a
peer to see every chunk of the original set of files
before finishing its download. This means that we
need the non-collusion principle, since an adver-
sary that has control over the entire network can
know the total set of chunks a peer has seen. They
can then determine what chunks are missing from
that set, and narrow down the range of possible
files the user downloaded. By continuing to stay
on the network after finishing a download, a peer is
able to reduce the ability of an adversary to narrow
down the possible files, but we do not force users
to follow this.

Below is a list of possible attacks we considered
when finetuning our system:

1. A peer asking the tracker for more peers after
not finding every chunk it desired means that
the first set of peers did not have the entirety
of the file it desires. This gives information
that the tracker can use to narrow down which
file is attempting to be downloaded. This is
why we only ask the tracker for peers once.

2. The chunks a peer hosts cannot be influenced
by the file it desires. Doing this would cause
any peer that queries it to know which file it
desires. Our mitigation to this is to have a peer
only host random chunks that it finds, and not
the chunks it desires.

3. A peer not updating their database reveals that
they just queried for a chunk that they wanted.
This is because if a peer does not host the de-
sired file, any query to that peer is for a chunk
they want to host or their list of peers. Both of
these cause a database update. Thus the only
time a database update does not occur is when
a user queries for a chunk they desire. Our
mitigation for this is to have peers constantly
update their personally hosted database with

the rarest chunks in their local network. This
provides two benefits, first it allows peers to
make queries for chunks owned by another
peer. These queries do not cause the database
to update. Secondly it improves movement of
chunks through the network, as rare chunks
are more likely to be propagated.

Our system fulfills the definition above. We note
that each individual query does not leak informa-
tion about which chunk a peer is attempting to
download based on the LWE assumption inherent
in SimplePIR. Because of the non collusion prin-
ciple, and that peers should be churning through
chunks they own information cannot be gained
about whether a peer does or does not desire the
chunks of another peer, since they may be asking
for a list of known peers or for which chunks the
peer owns.

5 Implementation

The implementation of our system leveraged the
Go programming language. We chose to use Go
because it provides easy to use, intuitive rpc calls,
uses static typing, and is a compiled language. The
rpc calls made incorporating P2P communication
significantly easier. Static typing helps prevent
bugs, while compiling makes the program easier to
distribute to users. All of the PIR code was written
from scratch, including functions to multiply matri-
ces, add matrices, encrypt column vectors, decrypt
column vectors and other necessary functions to im-
plement different PIR schemes. The PIR scheme
used in the implementation is more rudimentary
than SimplePIR as it does not use hints or pseudo
random matrices. We made this choice to decrease
the complexity of the implementation. The code for
this project can be found in the following GitHub
Repository.

We made use of the crypto/rand library in Go
wherever possible to generate the best possible ran-
domness. We did this as the normal random li-
brary in Go is not cryptographically secure, and
since Regev encryption relies on randomness to en-
crypt we opted for the more secure version (Regev,
2009).

Our current implementation uses a seed URL
that is hosted locally on one of our laptops. In
future updates to the implementation, we hope to
have an MIT hosted URL that users are able to
query for information about peers in the network.
When a peer queries the seed URL, it returns a list

https://github.com/MMRROOO/6.5610_Final
https://github.com/MMRROOO/6.5610_Final


of endpoints, IP addresses and ports, that are the
current peers in the network. The implementation
also adds support for users to make themselves a
peer on the network by opening up a random high-
port for other peers to communicate with. Our cur-
rent implementation allows for very rudimentary
file sharing.

6 Applications

Applications of our system are similar to the nor-
mal BitTorrent system. It can be used as a simple
P2P file sharing system, but is more commonly
used to distribute copyrighted or other types of
restricted content. Section X includes further dis-
cussion about the ethics of such a system.

A few other applications we considered involved
distributed databases. Some existing applications
of BitTorrent include open source video games,
Linux distributions, video sharing, and file syncing.
All of these use cases apply to our system with the
added benefit of hosts being unable to track who
downloads what from their server.

7 Future Work

Due to limits with time and resources, we believe
that there is a lot of room for improvement in our
current system design and implementation. One
area for future work we found particularly interest-
ing is the possibility of fully homomorphic path
finding. In our system there is no guarantee that the
local network of a peer will have all of the chunks
of the original file, this means that they need to
discover new peers that may have the chunks they
want. Our current approach simply involves dis-
covering random peers and checking if they have
the desired chunk. We believe it would be possi-
ble to ask a peer for who in their local network
has a certain chunk, without revealing what that
chunk is through fully homomorphic pathfinding.
Though we could not successfully implement the
idea, we think it poses an interesting question for
future research.

8 Ethical Concerns

One of the issues many people have with the cur-
rent form of BitTorrent centers around the idea that
many people use it to download pirated or other
forms of illegal content. By building upon initial
BitTorrent implementations to add private queries,
our system could make it more difficult to track

the distribution of illegal content. As we consid-
ered the possible implications of such a design, we
considered the arguments made in “Keys Under
Doormats.” Abelson et al. (2015) argue that the
fundamental insecurities of today’s internet make
it such that we should be wary of sacrificing pri-
vacy for security for the potential benefits to law
enforcement.

Our system is in no way intended to make cy-
bercrime easier. We believe that all users of the
internet have a fundamental right to privacy and
ought to expand their abilities to keep sensitive
information private.

9 Work Division

Our team attempted to divide the work as much as
possible. The ideation phase was a collaborative
effort as we sought to mold our initial idea of a dis-
tributed PIR scheme into its final form. Regarding
the implementation, Mario Mrowka wrote much
of the PIR code. Patrick Whartenby and Mario
developed much of the networking code together,
while Andrew Zhao was responsible for building
an extensive testing suite. All three contributed to
the paper and the presentation, with each handling
the areas they felt most comfortable in.

10 Conclusion

Our scheme shows the possibility of privatizing
P2P file sharing. The novel use of PIR further
extends its possible use cases and helps to push the
internet towards a place where users have a greater
degree of privacy. While there still exists a lot of
room for improving the efficiency of finding peers
and finding files, we successfully implemented the
system for small text files.

11 Acknowledgements

We would like to acknowledge the help we received
from course staff and others in the completion of
our final project. We want to thank our TA, Kata-
rina Cheng for her guidance during the ideation
and development phases of our project. We want
to thank Prof. Corrigan-Gibbs and Prof. Kalai, not
just for their excellent lecturing during the semester,
but for their passion for the subject as it motivated
and inspired us.



References
Harold Abelson, Ross Anderson, Steven M. Bellovin,

Josh Benaloh, Matt Blaze, Whitfield Diffie, John
Gilmore, Matthew Green, Susan Landau, Peter G.
Neumann, Ronald L. Rivest, Jeffrey I. Schiller, Bruce
Schneier, Michael A. Specter, and Daniel J. Weitzner.
2015. Keys under doormats: mandating insecurity
by requiring government access to all data and com-
munications ‡. Journal of Cybersecurity, 1(1):69–79.

Bram Cohen. 2001. The bittorrent protocol specifi-
cation. https://www.bittorrent.org/beps/
bep_0003.html. [Accessed 14-05-2024].

Alexandra Henzinger, Matthew M. Hong, Henry
Corrigan-Gibbs, Sarah Meiklejohn, and Vinod
Vaikuntanathan. 2022. One server for the price of
two: Simple and fast single-server private informa-
tion retrieval. Cryptology ePrint Archive, Paper
2022/949. https://eprint.iacr.org/2022/
949.

E. Kushilevitz and R. Ostrovsky. 1997. Replication is
not needed: single database, computationally-private
information retrieval. In Proceedings 38th Annual
Symposium on Foundations of Computer Science,
pages 364–373.

Oded Regev. 2009. On lattices, learning with errors,
random linear codes, and cryptography. Journal of
the ACM, 56(6):1–40.

Alex Sherman, Angelos Stavrou, Jason Nieh, Clifford S.
Stein, and Angelos D. Keromytis. 2007. Can p2p
replace direct download for content distribution.

https://doi.org/10.1093/cybsec/tyv009
https://doi.org/10.1093/cybsec/tyv009
https://doi.org/10.1093/cybsec/tyv009
https://www.bittorrent.org/beps/bep_0003.html
https://www.bittorrent.org/beps/bep_0003.html
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://eprint.iacr.org/2022/949
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.7916/D8KD25SK
https://doi.org/10.7916/D8KD25SK

