Threshold Scheme Implementation for
Physical Security Keys

Keawe Mann, Jess Ding and Ashhad Alam
May 15, 2024

Abstract

As we move into a more digital world, the commercial use of phys-
ical security keys has been rising. However, there is still a barrier to
entry for the regular customer because of the difficulty in recovering
access in case the key is lost. In this paper, we propose a proof-of-
concept implementation of threshold cryptography to support multi-
party keys. This will reduce some of the risk surrounding physical
security keys and make them more accessible for personal use.



1 Introduction

As we move into a more digital world, creating strong passwords is even
more important than before. However, the number of people being affected
by data breaches has been increasing at an alarming rate. This means that
relying on strong passwords is not enough, and we need other ways to keep
our data secure. One of the ways to do so is Two-Factor Authentication
(2FA) or its more general counterpart, Multi-Factor Authentication (MFA).

2 Motivation and Related Work

Two-factor authentication adds an additional layer of security to verify
that only authorized users can gain access to the data requested. Rather
than immediately gaining access after entering the correct username and
password, users are prompted to enter some more information or take some
additional action.

Many major account providers (Google, Meta, Apple) for various email,
social networking, and other identity-based services are now transitioning
their account holders to use some form of Multi-Factor Authentication (MFA),
whether it be through a separate authenticator service like Duo, Authy, or
Yubikey, or through OTP-based methods. Unlike Google’s Youtube veri-
fication or Apple iCloud’s device verification, such separate authenticator
services are third-parties that do not require internal knowledge of how the
account provider’s services work, which is why users who want additional
layers of security on their accounts tend to use these third party authentica-
tion services. Among these third party authenticator services, app solutions
like Duo and Authy provide relative convenience for logging in, but physi-
cal security keys like Yubikey are again used more by security buffs, since
their offline nature again reduces network-based security risks. Of course,
the added security of physical authenticators comes at the tradeoff of conve-
nience, since users must always have that physical key with them to unlock
their online accounts.

Current best practices for using physical authenticators places a heavy
burden on users. Users are encouraged to preemptively buy and set up up
duplicate keys for their accounts, ensuring they will retain access to these
accounts, even after losing their primary key. Some users go so far as to
store these spare keys in safes or deposit boxes. Without a backdoor into the


https://www.apple.com/newsroom/2023/12/report-2-point-6-billion-records-compromised-by-data-breaches-in-past-two-years/
https://support.yubico.com/hc/en-us/articles/360013647620-Losing-Your-YubiKey

accounts secured by a physical key, having only one physical key requires the
user to relinquish a large amount of convenience for a comparatively small
amount of added security. This security catch-22 is why physical security
keys are mostly only used for corporate accounts, where the I'T department
usually has the account backdoor, or for security buffs who invest into mul-
tiple physical keys to hedge against loss (famously, for cold bitcoin wallets
where online security is only as good as offline physical security).

In the realm of Multi-Party Authorization (MPA), processes exist for
protecting telecommunications, data, and other services of national interest.
Such processes can be implemented technically, though many other processes
also hinge heavily on procedural implementations, as in the case of the Soviet
submarine commander who helped avert international nuclear war during
the Cuban missile crisis. In any case, current such MPA processes have too
much overhead to be practical for regular email account security, though the
concept warrants exploration for a mini-fied solution.

More academically, threshold schemes with a centralized trusted entity
and threshold cryptography with entirely distributed security have appli-
cations in cloud computing and low-energy and low-latency situations [3].
There are various threshold cryptography schemes, including one by RSA
Security [2] [1]. In such a system, there is a public key, while the private key
is shared between a group, in such a way that some subset of the group can
collaborate to figure out the private key. An adversary, on the other hand,
will need to gain access to a non-trivial number of group members to be able
to learn anything about the private key.

Given the convenience-security tradeoff of available MFA implementa-
tions, especially physical security keys, we propose a proof-of-concept im-
plementation of a threshold scheme for account recovery. Allowing trusted
family and friends to together provide a backdoor into your account only
when a user has reported their physical authentication keys as lost will lower
the convenience cost for ordinary users to increase their account security.
More concretely, we propose a proof-of-concept scheme where a single secu-
rity key can unlock a demo account (normal use case scenario), or where
several people working together (at least ¢ out of a group of size n), with
simulated security keys, can also unlock the account.

Most existing account recovery methods necessarily reduce security in
some way. Existing options include an email sent to a designated account or
a text sent to a designated phone. Introducing these separate systems and
accounts associated with account recovery significantly increases the attack


https://www.cnbc.com/2023/10/17/crypto911.html
https://www.vox.com/future-perfect/2022/10/27/23426482/cuban-missile-crisis-basilica-arkhipov-nuclear-war
https://www.vox.com/future-perfect/2022/10/27/23426482/cuban-missile-crisis-basilica-arkhipov-nuclear-war
https://www.vox.com/future-perfect/2022/10/27/23426482/cuban-missile-crisis-basilica-arkhipov-nuclear-war
https://www.inderscienceonline.com/doi/abs/10.1504/IJHPCN.2015.070021

surface. Merely requesting security changes/password resets and compromis-
ing a user’s email could be enough to break into the user’s account.

With our scheme, the recovery method does not reduce the security of
the overall system. Several actors must work together to unlock the ac-
count. These same actors also cannot collaborate to open the account for
themselves—only the original user will have access. Moreover, each of the
actors’ shares, which must be combined to provide access to the account (as
described in later sections), are guarded by security keys. This ensures at
least one security key is involved any access to the account, even during the
reCovery process.

3 Technical Background

Our implementation relies directly on Shamir’s secret sharing scheme as
presented in class: in a t of n scheme, generate a random polynomial of
degree t — 1 if GF[p|, p > n where f(0) = m and share i € [1,n] is f(3).
Reconstruction involves solving a system of ¢ equations in ¢ variables, and
correctness and security follow from class.

The field of threshold cryptography is a natural extension of Shamir’s se-
cret sharing, but for wider deployments like distributed computing or private
matrix multiplication.

4 Implementation

The implementation details for the scheme will focus on the following:
e The standard login process
e Assigning trusted users
e Distributing shares

e Recovering the user’s account in case the key is lost

4.1 Standard Login Process

For any user in our scheme, the standard login process comprises of a two-
factor authentication process. The user will have to enter their password then


https://65610.csail.mit.edu/2024/lec/l15-ss.pdf
https://65610.csail.mit.edu/2024/lec/l15-ss.pdf

use their security key to gain access to their account. An incorrect password,
a non-existent security key, or a security key registered to a different user
will not allow access to the user’s account.

Even though the use of the security key makes the login process more
secure, the user is still encouraged to choose a strong password because of
the account recovery process outlined in Section 4.4.

Our implementation uses the Web Authentication (WebAuthn) stan-
dard, which is widely used in industry. WebAuthn interfaces with security
keys (or passkeys, an increasingly popular alternative to physical security
keys) to allow for 2FA. This standard also allows for passwordless (single
factor) authentication, where only the security key and a username are re-
quired to log in. Our implementation of WebAuthn uses Python on the
backend (running on the host), and JavaScript for the front end (running on
the client device). We also use the Python Flask library as needed to run
our website.

WebAuthn has two procedures, one for registration and one for login.
For both registration and login, the client requests a challenge from the host.
This challenge is randomly generated by the host and guards against replay
attacks. A new challenge is generated for each login and registration.

For registration, once a challenge has been received from the host, the
client platform prompts the user to set up a security key or passkey. Next, a
credential is produced with the help of the security key. This credential con-
tains a unique ID, the challenge, a public key, and several other attributes.
Importantly, the security key stores the private key counterpart of the afore-
mentioned public key. The public key will be used by the host to verify
signatures sent with future login requests. The credential is then sent to the
host to verify. The host saves certain information from this credential, such
as the ID and public key, for any future login requests. The challenge con-
tained in the credential should match the most recent challenge the host sent
out for the given user. If everything checks out, registration has succeeded.

For login, as previously mentioned, the client again requests a challenge
from the host. However, unlike with registration, the client also requests
the unique ID that the host has been saving from registration. Back on the
client, the unique ID, plus the challenge and a few other fields, is provided
as input to create a login request. The user’s security key uses the private
key (if one exists) corresponding with the provided ID to create a signature.
This signature is sent along with several other data attributes to the host.
If the host is able to verify the signature and the correct challenge has been



sent back, login succeeds.
WebAuthn allows for severThe mentioned public and private key are el-
liptic curv

4.2 Assigning Trusted Users

Once a user has created their account and logged in with their credentials,
they can select any number of existing users to be their trusted users. In
addition, the user will also select the threshold for how many users they need
to approve any recovery request initialized in the future.

The user needs to be careful in assigning these trusted users, as untrust-
worthy users can pose a security risk, as outlined in 5.1.2. While our imple-
mentation does not take these steps, for a secure system, standard security
procedures on storing user data and passwords should be followed. For ex-
ample, only hashes of the passwords (with salt) should be stored and user
data should all be encrypted.

4.3 Distributing Shares

The server will now generate a random password, P,. It will then generate
a t — 1-degree polynomial (where t is the the threshold selected in Section
4.2) according to Shamir’s secret sharing protocol. Next, the server will
generate n shares (where n is the number of users selected in Section 4.2)
and send these shares to each of the trusted users’ accounts. The trusted
user’s accounts must also be secured with security keys.

In our implementation, shares are simply stored in each trusted user’s
account. In a real implementation, these shares should be stored encrypted.
Perhaps with some additional hardware support, shares could be stored on
trusted users’ security keys, meaning no shares would have to be stored by
the host server for any extended portion of time, further improving security.
We used Python, along with the SageMath library, to implement Shamir’s
secret sharing protocol.

If user data is encrypted on the server, this data should be encrypted
twice. Of course, this will double the amount of space the user’s data takes
up. One set of encrypted data will be encrypted in such a fashion that the
user can enable decryption through the standard login process (i.e. when
they still have their security key). To enable recovery of the user’s data once
this original security key has been lost, all user data should also be encrypted



with P,. This data could then be decrypted after we’ve reconstructed P, at
the end of the recovery process.

4.4 Account Recovery

The primary user will need to request an account recovery if either of the
following happens:

e They lose their security key
e They forget their password

If the user loses their security key, they are still able to access their account
in a limited capacity and request account recovery. They will not be given
full access, or be able to make changes to their account in such a case. If the
user forgot their password, they can request an account recovery using their
security key in a similar manner. The figure below illustrates how the server
might respond to different scenarios:

>t users trusted users

3 < >< /{89000

Ix

»

Figure 1: How trusted users can help recover the primary user’s account

primary user

server

[l bo ©o

Once the user submits such a request, all of the trusted users will get a
notification to send their shares. The server will wait until it gets at least ¢
requests to reconstruct P, generated in Section 4.3. Any less than ¢ shares,
and the server will be unsuccessful in recovering the secret password.

Once the password has been reconstructed, the primary user will now be
given temporary access to their account. They will now be able to register a
new security key, as well as reset their password. Once this has been done,
they will be prompted to login again, and gain full access to their account.

7



5 Analysis

5.1 Security

Any adversary choosing to gain access to the system has two main target
areas:

e The login process

e The recovery process

5.1.1 The Login Process

The login process involves the user’s password and the physical security
key. Even in the case that a user’s password is insecure, or exposed (if, for
instance, the user uses the same password everywhere and was the victim of a
data breach), any attacker will still need to gain access to the physical security
key to be able to access the account. Guessing the signature generated by the
physical security key is not an easy task. Accordingly, the scheme is secure
against attacks on the user’s login process.

However, just knowing the user’s password will still allow an adversary
to mark the security key as lost. As a result, we need to be careful about
verifying if it’s actually the primary user who initiated this request, before
letting the trusted users send shares back to the server. This is not covered
as part of this project, and outlined as future work in Section 6. It is worth
noting that even this would still not compromise the security of the account
unless enough trusted users all send their shares.

5.1.2 The Recovery Process

The recovery process involves the trusted users sending their shares back to
the server to reconstruct the random password. The security for this relies
on Shamir Secret Sharing being secure. Since we need at least ¢ shares to
recover the polynomial used to hide the secret, any adversarial method will
rely on corruption of at least ¢ users. Even the corruption of ¢ — 1 users
will not reveal any information about the polynomial chosen, and hence, the
secret message.

Since the trusted users’ accounts are also secured using Two Factor Au-
thorization with their password and security key, any attacks involving gain-



ing access to these accounts are likely to be unsuccessful, as outlined in
Section 5.1.1.

On the other hand, there is a risk of the trusted users colluding with
each other to learn the secret. Security against this relies on making sure
the primary user has a secure password (since this is needed to initialize the
recovery process), proper loss report verification, as well as making sure the
user picks their "trusted users” carefully. This is, unfortunately, one of the
weaker points of the scheme and outlined as future work in Section 6.

5.1.3 Single Point of Failure

One big caveat to using this scheme is that it results in a singular point
of failure. The secret password, P, is generated at a single point before
being split into shares. In addition, the shares are collected at a single
point to reconstruct the secret. So, the scheme is very vulnerable to attacks
on these points. If either of these servers crash, then the system cannot
generate/reconstruct the secret password for recovery. This is a security
vulnerability of this system.

5.2 Correctness

Shamir Secret Sharing generates n(> t) shares of a polynomial of at most
degree t — 1. Using ¢ of these shares, we can guarantee reconstruction of
this polynomial, and hence, find the secret. As a result, if we have at least
t users collaborating to recover the secret, we can generate the passkey that
was used to generate these shares. As a result, the scheme is correct.

6 Future Work

6.1 Weighted Sharing for Trusted Users

The way the scheme is designed allows easy expansion to allow tiered
trusted users. In any structured organization, some users will have more
powers than others. A simple way to implement such a feature would be
to distribute shares to these users according to the power they should have.
Consider the following example with two tiers of users:

We want to establish a scheme where each of the following options should
be enough to recover the account:



e 2 Tier I users
e 6 Tier IT users
e 1 Tier I user and 3 Tier ITI users

Now, instead of giving one threshold to each user, we can set our threshold
(t) to 6. Each Tier I user gets 3 shares each and each Tier II user gets
one share, which makes recovering the account possible in each of the above
scenarios. This example can be expanded to include an arbitrary number of
tiers, and the threshold can be chosen accordingly.

6.2 Dealing with Security Concerns

While this scheme makes recovering account access more secure, it does
come at a cost. Shamir’s secret-sharing scheme inherently doesn’t account
for any malicious actors who may submit incorrect shares, and the threshold
scheme has a single point of failure at the trusted central entity that generates
and reconstructs shares. Our proof-of-concept implementation also entirely
reconstructs the exact password.

Beyond our proof-of-concept implementation reconstructing the exact
user password, it should be easy to generate a different temporary passphrase
to momentarily allow regained access when the user reports physical key loss,
while not compromising on safety. We note that future work on a truly de-
ployable solution should also include share verification, as well as look to
improve having a single centralized entity for share generation and recon-
struction. An implementation for actually verifying that the user themself is
reporting their key as lost should also not be discounted as trivial in a truly
deployable solution.

6.3 Expansion to Other Areas

Our implementation focuses on a scheme for account recovery using thresh-
old cryptography for security keys. This can be expanded to other areas,
where the goal is more than just account recovery. For instance, in the case
of wills or digital currency wallets, we can use a similar method to the one
proposed in this paper to gain access to the account. Obviously, the security
of such a scheme is even more important in these use cases, and more work

10



needs to be done to make the scheme secure before deploying it in these
areas.

6.4 Cost-Benefit Analysis

Finally, we note that one detail remains: ascertaining if the market exists.
That is, a truly deployable solution will also need to determine whether a user
who cares about security enough to actually use a physical authenticator will
also trust enough people to use a threshold implementation for key recovery.
Given that we are not business majors, we shall leave this detail to the reader.

7 Team Contributions

Each team member worked on every portion of the project (proposal, imple-
mentation, presentation, and report).

References

[1] Ivan Damgard and Maciej Koprowski. Practical threshold rsa signatures
without a trusted dealer. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 152—165. Springer, 2001.

[2] Hanna Lee, Hao Shen, and Brian Wheatman. Implementation and dis-
cussion of threshold rsa. 2016.

[3] Guoyan Zhang and Jing Qin. Lattice-based threshold cryptography and
its applications in distributed cloud computing. International Journal of
High Performance Computing and Networking, 8(2):176-185, 2015.

[4] Threshold Cryptography, MPC, and MultiSigs: A Complete Overview

11


https://blog.pantherprotocol.io/threshold-cryptography-an-overview/

	Introduction
	Motivation and Related Work
	Technical Background
	Implementation
	Standard Login Process
	Assigning Trusted Users
	Distributing Shares
	Account Recovery

	Analysis
	Security
	The Login Process
	The Recovery Process
	Single Point of Failure

	Correctness

	Future Work
	Weighted Sharing for Trusted Users
	Dealing with Security Concerns
	Expansion to Other Areas
	Cost-Benefit Analysis

	Team Contributions

