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Abstract

We implement ring signature variants such as a post-
quantum t-of-n ring signature scheme and a linkable/one-
time within-ring signature scheme. We also show an im-
proved method for non-interactive within-ring signatures in
added O(n) space which improves upon the previous non-
interactive within-group signature scheme of Hu et. al [6]
which has a space complexity of O(n2). We do this by
using a black-box transformation to convert any minimal
ring signature to a within-ring signature. We also mea-
sure signature sizes and computational requirements for the
post-quantum threshold ring signature and linkable/one-
time within-ring signature schemes.

1. Introduction
Within-group signatures are a cryptographic primitive in

which any member of a group has the ability to anony-
mously produce a signature on behalf of the group which
cannot be distinguished from forgery by external parties.
Within-group signatures accomplish this by combining ex-
isting ideas from ring signatures [8], where members of a
group anonymously create signatures on the behalf of the
group, and designated verifier signatures, where only a fixed
set of individuals are given the ability to correctly verify
signatures. Such schemes can play important roles in sup-
porting whistleblowing or authenticated but deniable com-
munications between members of a secret group.

In within-ring signatures, the anonymity can not be re-
voked by the verifier and ring members can be added and
removed for each signature. We introduce a transforma-
tion which converts any minimal ring signature to a within-
ring signature in a black box way by encrypting the mes-
sage with the public keys of the verifiers. The anonymity
of the ring signature can not be revoked but the inability of
non-verifiers to verify the proof depends on the honesty of
the verifiers. In general, there is a within-witness transform
which can be used to convert any minimal witness indistin-
guishable proof to a within-witness indistinguishable proof
with added space and time complexity which is linear in the

number of verifiers.
The advantage of within-ring signatures is the ability to

leak a secret in an authenticated way to an arbitrary set
of verifiers while maintaining a strong level of anonymity.
This generalizes from ring signatures where the verifier set
is the set of all verifiers and from designated verifier sig-
natures where there is only one verifier [7]. In the context
of whistleblowing, this allows for the secret to be privately
leaked within a group without allowing the signature to be
verifiable in a larger context.

2. Related Work
The current non-interactive scheme for within-group sig-

natures by Hu et. al has a signature size which is quadratic
in the size of the group. The interactive scheme has a com-
munication complexity that is linear in the size of the group.
It is not shown that their scheme is able to add or remove
group members, and they list that as future work. Finally,
the hardness assumption used for the cryptosystem is the
discrete logarithm that is a special case of the hidden sub-
group problem for normal subgroups and is efficiently com-
putable by a quantum computer.

We solve the problems in the paper that are listed as fu-
ture work. Our first solution modifies the non-interactive
solution of Hu et. al to make the signature size linear in
the size of the ring and adds support for adding and remov-
ing members. We apply this to a threshold ring signature
scheme [5] and a linkable/one-time within-ring signature
scheme which we implement.

The idea is to encrypt some value like the message which
is used for verification for verification with the public keys
of the verifier set to prevent non-verifiers from verifying the
signature. The message is removed from the signature and
encryptions of the message with the public key of each ver-
ifier E(pki,m) are added to the original signature.

It may be possible to generalize the idea behind the
within-ring transform to most witness indistinguishable
proofs. The idea is to generalize to non-interactive within-
witness indistinguishable proofs by encrypting some part v
of the proof which is needed for verification with the public
keys of all of the verifiers and removing v from the proof.
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3. Within-Ring Signatures

We begin by introducing the building blocks of a within-
ring signature scheme.

3.1. Algorithms

A within-ring signature scheme is define by three algo-
rithms: Setup(·),Sign(m, ·) for some message m ∈ M,
and Verify(·).

3.1.1 Key Generation

We assume that there exists a mapping from public keys to
identities.

Setup(1n)→ (si, pki)
n
i=1

3.1.2 Message Signing

One ring member is able to sign for the entire ring since
the signature algorithm only requires one private key
corresponding to one of the public keys in the ring.

Sign(m, si, {pki}ni=1)→ (σ, c)

1. σ ← ring sign(m, si, {pki}ni=1, pkr)

2. Ei = E(pki,m)

3. Output (σ, (pki;Ei))

3.1.3 Verification

Only verifiers from within the ring should be able to
efficiently decrypt the ciphertext to retrieve message and
verify the validity of the signature. We describe the scheme
as below:

Verify(σ, si, (pki;Ei))→ {0, 1}

1. m← D(si, Ei))

2. Output ring verify(m, {pki}ni=1),

where ring verify is the verification algorithm for the
ring signature.

3.2. Security Properties

Within-ring signatures have the security goals of correct-
ness, within-ring unforgeability, and anonymity. We give
formal definitions for each of these below.

3.2.1 Correctness

For all messages and valid secret key and public key pairs,
correctness of the scheme is achieved if verification of a
valid signature by a member of the within-ring is successful.
In other words,

Verify(Sign(m, si, {pki}ni=1)) = 1 (1)

3.2.2 Within-Ring Unforgeability

In addition, we want to ensure that a member of the within-
ring cannot produce an signature σ∗ which will be success-
fully verified without knowing the secret key.

Intuitively, one can note that the unforgeability property
of ring signatures is not affected by the encryption of the
message with the public keys. There is a reduction from
an efficient algorithm A which can break the EUF-CMA
property of the within-ring signature to an efficient algo-
rithm A′ which can break the EUF-CMA property of the
ring signature, which we will outline below:

A′ → σ∗

1. An efficient algorithm A → (m, {σ, (pki;Ei)})

2. Output (m,σ)

3.2.3 Anonymity

One of the key security guarantees of ring signatures is the
anonymity property. In other words, given a signature σ,
signers are unable to determine from which member it was
generated. We further categorize anonymity properties into
statistical anonymity and computational anonymity.

3.2.4 Statistical Anonymity

A widely-used definition of anonymity for ring signature
schemes describes how the signatures generated by differ-
ent signers are indistinguishable and leak no information
about the underlying signer. They are usually required to
be statistically indistinguishable, which implies

{Sign(m, si, {pki}ni=1)} ≈s {Sign(m, s′i, {pki}ni=1)},

The signatures distributions are generated over the mes-
sage and public key spaces.

3.2.5 Computational Anonymity

A computational definition of anonymity requires signa-
tures generated by different members of the ring to be
computationally indistinguishable from one another. We
give a security definition using the following anonymity
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game instead of using statistical distance to allow defini-
tions of computational security properties.

Anonymity Game:

1. The challenger randomly generates a signer index
i←R [n]

2. The challenger randomly generates n secret-key,
public-key pairs (sj , pkj) for all members of the ring,
including the signer.

3. The adversary can query a ring signature oracle to gen-
erate ring signatures from message-signer pairs (m, i)
and repeats this action a polynomial number of times

4. The adversary sends a new message m′ to the chal-
lenger

5. The challenger sends back a signature σ =
Sign(m′, si, pki) using the keys of the signer

6. The adversary outputs a guess for the signer i

Computational anonymity is satisfied if the probability
that the adversary correctly wins the game is at most 1/n+
negl(λ).

3.2.6 Proof of Computational Anonymity

Intuitively, anonymity is not affected since the encrypted
values of m can be computed by anyone with knowledge
of the public keys. Assume there exists some algorithm A
which can win the Anonymity Game described above with
1/n plus some non-negligible probability for a within-ring
signature. We can use this to construct an efficient algo-
rithm A′ which can break the anonymity property for the
ring signature as follows:

Efficient A′ :

1. Send m to the challenger and to get σ

2. Compute the encryption Ei = E(pki,m) of m for
each public key of the verifiers pki

3. Output A(σ, (Ei; pki))

3.2.7 Outside Ring Obfuscation

In addition to within-ring anonymity properties, our within-
ring signature also provides security guarantees towards ob-
fuscating the validity of a signature from parties outside the
set of verifiers.

3.2.8 Minimal Signatures

We define a signature σ to be minimal if no efficient algo-
rithm is able to use only σ to distinguish between the mes-
sages used to create the signature.

3.2.9 Key Secrecy

Furthermore, the secret key used for the ring signature
should be indistinguishable from uniformly random if the
signature is known and signature can’t be verified.

3.2.10 Proof

Intuitively, a non-verifier can’t compute the message with-
out the secret keys and is unable to verify the signature.

We construct a forgery algorithm without the secret key
which is indistinguishable from a valid signature to prove
outside ring obfuscation.

Steps:

1. Construct a ring signature with a uniformly random
key and some message m.

2. Encrypt the message m with the public keys of the ver-
ifiers and remove the message from the output.

3.3. Adding and Removing Ring Members

The sign and verify algorithms have support for creating
ring signatures for arbitrary sets of public keys.

3.4. Complexity Analysis

An additional n encrypted messages are added, while the
message is removed. This requires an additional n public
key operations.

4. Post Quantum Trapdoor Commitments

Trapdoor commitments can be used to implement thresh-
old ring signature schemes in a black box way: we im-
plement post-quantum trapdoor commitments using post-
quantum sigma protocols and a post-quantum one-way
function.

A trapdoor commitment is a commitment c to some value
y such that the holder of some secret s corresponding to
the committment is able to change the opened value of c to
some other value y′. Trapdoor commitments are indistin-
guishable from a non trapdoor commitment.

4.1. Algorithms

4.1.1 Hard Instance Generation

Setup(1λ)→ (s, w)
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4.1.2 Commitment

Commit(s,m)→ (commitment, opening)

1. Run the simulator with m as the challenge and s as the
statement to prove.

2. Output the first message as the commitment.

3. The message is the challenge. In practice, a random
oracle hash function is applied to the message to make
it a fixed size.

4. The response is the opening.

4.1.3 Trapdoor Commitment

Trapdoor(s,m)→ (commitment, state)

1. Run the prover with s as the statement to prove.

2. Output the first message as the commitment.

3. The state of the prover is also output to use as input for
the trapdoor opening

4.1.4 Trapdoor Opening

TrapOpen(state, c, w,m′, c)→ response

1. Output the response generated by the prover as the
opening. The prover can generate a response for any
challenge (message) because the witness is known.

4.1.5 Verification of Opening

VerifyOpen(c,m, o)→ {0, 1}
1. Run the protocol and output the result of the verifier

for commitment c, message m, and opening o. The
commitment is the first message, the message is the
second message, and the opening is the third message.

4.2. Security

The proof of security assumes that the sigma protocol
has the special honest verifier zero knowledge property.

4.3. Correctness

The correctness of the trapdoor commitment scheme fol-
lows from the completeness of the sigma protocol.

4.4. Binding

The classical binding property of the commitment fol-
lows from the special soundness of the sigma protocol. This
does not extend to the quantum setting, where a classically
binding commitment scheme allows for a commitment to
be opened to multiple messages [10]. This is not a problem
in the protocol since there is at least one honest signer who
performs a measurement on the message and opening for all
of the commitments.

4.5. Hiding

The hiding of the commitment follows from trapdoor in-
distinguishability.

4.6. Trapdoor Indistinguishability

The indistinguishability of the trapdoor commitment and
existence of the simulator for making commitments follows
from the zero knowledge property of the sigma protocol.

5. Post Quantum (t, n) Ring Signatures
We build post quantum (t, n) ring signatures using post

quantum trapdoor commitments, secret sharing, and a ran-
dom oracle which has the same domain and range using the
scheme by Haque et. al. We present a simplified version
which uses a random oracle for the soundness proof, but
the implemented version uses the method for post-quantum
non-interactive zero knowledge proofs by Unruh [9].

5.1. Algorithms

We assume that the there is a mapping from public keys
to identities and that the public keys are encoded in some
way in the signature or agreed upon beforehand.

5.1.1 Hard Instance Generation

The instances are generated from a quantum-hard one way
function f to define elements (i, f(i)) of a relation R. These
are used for the trapdoor commitments.

Setup(1n)→ (si, wi)
n
i=1

5.1.2 Signing

For the input values for the points (i, o) we use the index i
for ring member i starting from 1 and ending at n. A differ-
ent set of input values (roots of unity) may be used in certain
fields to speed up polynomial interpolation. In the actual
implementation, the step marked simplified is replaced by
the transform mentioned in section 7. The verification step
is replaced by a similar transform.

A high-level overview of this threshold signature is
described below:

Sign(m, {si}ti=1, {pki}ni=1)→ (m, pi, ci)

1. Generate random points {pi}ni=1
R←− F

2. Generate the corresponding commitments:

• ci ← Commit(pki, pi), i ∈ {t+ 1, ..., n}
• ci ← TrapCommit(ski, pki, pi), i ∈ {1, ..., t}
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3. Compute the challenge p0 ← H(m, {ci}ni=1) (simpli-
fied)

4. Generate a polynomial poly(·) ← from a polynomial
interpolation of

(
p0, {pi}ni=t+1

)
5. All t threshold members now re-evaluate their point to

be on the polynomial pi = eval poly(i + 1) for i ∈
{1, ..., t}.

6. Output (m, pi, ci)

5.1.3 Verification

Verify(m, pi, ci)→

1. Verify openings (points) to commitments

2. Compute p0 = H(m, ci) (simplified)

3. Compute poly = interpolate(pi)

4. Output 1 if deg(poly) ≤ n− t

5.2. Protocol

For simplicity and efficiency, a leader is used by Haque
et. al to generate the commitments, points, and openings for
non-signers. These values are sent to every signer: part of
the reason is because classically binding commitments are
not secure when the commitments are made by a quantum
computer. Each signer then sends commitments for their
points and openings (points) to all of the signers. The sign-
ers can then combine these commitments and points to con-
struct a signature. We omit some details for simplicity.

5.3. Security

The proof of security is in the quantum random oracle
model.

5.3.1 Correctness

The correctness of the threshold ring signature follows from
the correctness of the polynomial interpolation algorithm
and the correctness of the trapdoor commitment scheme.

5.3.2 Unforgeability

The unforgeabilility of the threshold ring signature scheme
follows from the binding of the commitment scheme, the
randomness of the random oracle, and the randomness of
the points, and the properties of random polynomials.

5.3.3 Anonymity

The anonymity of the threshold ring signature scheme fol-
lows from trapdoor indistinguishability. The ordering of the
ring members should be uniformly random and independent
each time the signing algorithm is performed.

5.3.4 Within-Ring Transformation

The within-ring transformation applies since the signature
scheme is minimal. This answers the problem from Hu et.
al about constructing threshold within-ring signatures.

5.4. Complexity Analysis

In the presented scheme, there are n points and n com-
mitments, which results in a space complexity which is lin-
ear in the ring size. In the actual implementation, the signa-
ture size also scales linearly with statistical security param-
eters for increasing soundness (repeating proofs/generating
multiple openings).

The time complexity is dominated by the polynomial
interpolation algorithm which has a general runtime of
O(n2), although for certain fields it may be possible to do
polynomial interpolation in O(n · log2(n)).

6. Post Quantum Non-Interactive Zero Knowl-
edge Proofs

The standard soundness proofs for non-interactive zero
knowledge proofs using rewinding or straight line extrac-
tion do not work in the quantum computational model for
the general case. We use the transformation by Unruh to
implement post-quantum trapdoor commitments and post-
quantum threshold ring signatures by replacing the random
oracle hash function with the transform.

The idea is to avoid measuring the inputs to the random
oracle by using a random permutation which can be inverted
in the soundness proof.

6.1. Transformation

s is a statement in the relation which is instantiated by
a quantum-hard one way function (s, w) for which w is
the witness. The random permutation π can be constructed
by using a random oracle hash function with the same
domain and range . The value ki is a uniformly random
value used for the random permutation. o is an index in
the set of encrypted openings which determines which
opening will be output in the signature. Our description of
the transformation is specific to the threshold ring signature
implementation.

We can repeat the following protocol for some t itera-
tions to increase soundness as needed:

1. Challengei,Openi ← H(m, ⟨commits⟩, i), i ∈ [c]

2. ki ← R, i ∈ [c]

3. ei ← π(Openi, ki, ⟨commits⟩)

4. o← H(m, ⟨commits⟩, ei)

5. Output Openo, ko, ⟨commits⟩, {ei}
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6.2. Security

Due to the 3-special soundness of the sigma protocol, we
only make 4 openings. The number of openings is a power
of two so that the index output by the hash function will not
require rejection sampling. In the soundness proof, this is
also enough openings to extract the witness.

6.3. Complexity Analysis

The space and time complexity are linear in the number
of repetitions and number of openings made for the set of
commitments.

7. Implementation
7.1. Linkable/One-Time Within-Ring Signatures

We extended pyring (a linkable/one-time ring signature
scheme) by using our within-ring transform. We used El
Gamal with elliptic curves points as the cyclic group ele-
ments to generate shared symmetric keys to encrypt verifi-
cation values.

7.2. Performance

The estimated space requirements are a few hundred
bytes for a linkable/one-time within-ring signature with a
ring size of 3 and 128 bit security. The space used scales
linearly with the ring size and the time used scales linearly
with the ring size.

7.2.1 Signature Sizes

The signature sizes scale linearly with the number of ring
members.

n Size (b)
3 572
30 4448

300 41742

7.2.2 Signing Times

The signing times scale linearly with the number of ring
members. Our results are nonlinear probably because of
constant factors such as startup times. We were unable to
test with many ring members due to limits on the number of
open files.

n Seconds
3 0.05

30 0.06
300 0.15

7.2.3 Verification Times

The verification times scale linearly with the number of ring
members.

7.3. Threshold Ring Signatures

We build post-quantum trapdoor commitments from
post-quantum sigma protocols that were proposed in Gia-
comelli et al. [3] and optimized by Chase et. al [2]. We
then implement the transform used for the non-interactive
zero knowledge proofs and use it to build the post-quantum
threshold ring signature scheme by replacing the random
oracle hash function with the transform.

7.4. Performance

The estimated space requirements are 2MB for a thresh-
old ring signature with a ring size of 3 and 128 bit security.
The space used scales linearly with the ring size and the
time used scales quadratically with the ring size.

7.4.1 Signature Sizes

The signature sizes scale linearly with the number of ring
members.

t n Size (Mb)
2 3 1.9

20 30 19
200 300 183

7.4.2 Signing Times

The signing times scale quadratically with the number of
ring members and is reduced as the threshold increases.

t n Time (seconds)
2 3 0.2
20 30 2.4

200 300 25.4

7.4.3 Verification Times

The verification times scale quadratically with the number
of ring members.

t n Time (s)
2 3 0.3

20 30 2.9
200 300 29.2

7.5. Security Parameters

For the linkable within-ring signatures, we use the same
parameters as the original scheme. We use the parameters
used by the Picnic signature scheme for the trapdoor com-
mitments, a field size of 2256, and 4 encrypted openings for
the threshold ring signatures.
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8. Conclusions

We were able to implement new ring signature variants
and measure their performances for different ring sizes. We
believe that more work needs to be done to make post-
quantum threshold ring signatures usable, such as reducing
the number of interactions, the amount of computation, and
the sizes of signatures.

We also came up with an optimized implementation of
within-ring signatures. We think that it may have appli-
cations to extendable threshold ring signatures to hide the
signature until the signature is fully constructed, whistle-
blowing, voting, and cryptocurrencies.

We open source our implementations at https://
github.com/max-p-log-p/pqthr and https:
//github.com/max-p-log-p/within-ring.

Our contributions are as follows: all of us worked on the
paper and presentation, the second author implemented the
signature schemes.

9. Future Work

Extendable threshold ring signatures [1] allow for a re-
duction in the amount of interaction needed for threshold
ring signatures and also allows for stronger anonymity guar-
antees.

We think it may be possible to implement post-quantum
extendable threshold ring signatures with a space complex-
ity which is sublinear in the number of ring members [4],
since there are existing threshold ring signature construc-
tions with a sublinear space complexity.

We also think that the current threshold ring signature
could be made a lot more efficient by using lattice based
trapdoor commitments or by using isogeny based trapdoor
commitments.

Finally, we think it would be difficult but interesting to
find new applications for within-ring signatures and thresh-
old ring signatures.
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