Message Encryption in Audio Steganography

Daniel Hong, Grace Huang, Nitin Kumar

May 15, 2024

Contents

(1 Background|

(1.1 Audio Steganography Approaches

[1.1.1 Least Significant Bit encoding

(1.1.2 Echo hiding|

[1.1.3 Spread Spectrum|

2 Design Goals|

3 System Design|

[3.1 Implementation|

[3.2 Strengths

(4.1 Using DSSS instead of LSB| o000

4.2 Supporting Live Streaming|

[> Acknowledgements|

1 Background

Audio steganography, the practice of transmitting concealed information within an audio
file (the cover audio), has various applications, including covert communication and digital
audio watermarking. Besides their applications, the prevalence of audio files make them an
interesting medium to transmit hidden information. Various challenges exist in effectively
concealing information within cover audio, including the fact that the human auditory sys-
tem (HAS) is more sensitive than other human perceptual senses, making it easier to hear
differences between audio signals [2].

Many common approaches to audio steganography, such as Least Significant Bit encoding
or Spread Spectrum, conceal and transmit plain text messages (that are converted into bit
strings). Then, if an adversary gains information about what type of encoding was used to
alter an audio file and are able to retrieve the hidden message, they can easily reconstruct it.
As such, we are interested in exploring how data can be transmitted more securely through
audio files using a combination of audio steganography and cryptographic techniques. In
order to do so, we look at existing research on this front, identify properties that an effective
cryptographic audio steganography scheme should satisfy, and propose a scheme that satisfies
these properties.

1.1 Awudio Steganography Approaches

There are a few common approaches to audio steganography. These approaches include Least
Significant Bit (LSB) encoding, Echo hiding, Spread Spectrum (SS), and Phase coding [1].
To better contextualize audio steganography and how our project compares to existing audio
steganography approaches, we will discuss how some of these steganography methods work.

1.1.1 Least Significant Bit encoding

Least Significant Bit (LSB) encoding is the simplest form of audio steganography. In LSB
encoding, the hidden message is converted into a bitstring, and then the least significant bits
of each audio sample are replaced with the bits of the bitstring. For 32-bit integer .wav files,
one bit of the hidden message can be inserted per 32 bits of audio data.

LSB is prevalent because of its simplicity, but the main weaknesses of LSB are also due to
its simplicity. Since language is not statistically random, statistical analysis on the least
significant bits of stego audio is a big threat to the security of LSB encoding. Furthermore,

small amounts of noise will easily destroy the hidden message, since the least significant bits
will be modified.

There are many ways to enhance LSB to improve its security and efficiency, as it is easy to
build off of. For example, combining LSB with a stream cipher (e.g. AES counter mode) by
encrypting the plaintext before inserting it into the least significant bits allows the system
to satisfy a higher standard of security.

1.1.2 Echo hiding

Echo hiding adds the hidden message to the audio in the form of an echo. This makes use
of the idea that when audio is played in different environments, echos will be introduced to
the audio signal anyways. As such, the human auditory system will often find it difficult
to notice when echos are inserted into audio. The echo is defined by its amplitude, delay
rate, and offset (which is different depending on whether the message bit is 0 or 1). The
amplitude determines how strong the inserted echo is, and the delay determines how much
later the echo is inserted from the original audio. When the parameters of this echo are
tuned correctly, the altered stego audio will sound indistinguishable from the original audio

1.

1.1.3 Spread Spectrum

The Spread Spectrum method involves spreading a message throughout the frequency spec-
trum of the cover audio. This involves first converting the message to binary, then spreading
it out over a larger bandwidth by artificially lengthening it. Noise is then added to this
modified data and used to modulate the cover audio. This technique is more resistant to
compression or manipulation than other methods.

The most simple and most commonly used approach to perform spread spectrum steganog-
raphy is Direct Sequence Spread Spectrum (DSSS). In this mode, a bitstring b representing
a secret message is converted into a longer string using a Barker code c. A Barker code is a
code of £1s that has very low auto-correlation, or in other words does not follow any obvious
patterns. For example, one such Barker code is the 11-bit Barker code

e =91,1,1,-1,-1,-1,1,1,—1,1,—1}.

Under the mapping 0 — —c¢, 1 — ¢, the sequence b is then converted into a sequence w
by mapping each digit of b to its image in succession. Finally, the sequence w is used to
modulate the audio, by adding dw to the first |w| samples of the audio, where § is small
enough that the message cannot be heard. In order to retrieve the secret message, one can
convolve ¢ with the stego audio samples. Due to the low auto-correlation of ¢ with itself, b
can be retrieved by analyzing the peaks of this convolution.

Methods to improve DSSS have been explored: one such method involves converting the au-
dio to the frequency domain first by using the modulated complex lapped transform (MCLT),
a close variation of the Discrete Fourier Transform. This method resulted in stego-audio that
was harder to detect encryption [3]. An example of work that has combined encryption with
audio steganography involves combining an encryption scheme and a with DSSS [4]. The
message is first encrypted using a Vigenere cipher. Then, the encrypted message is then
converted into a bitstring, and the DSSS method is used to embed the message into the au-
dio file. A pseudo-random number sequence, seeded off of a secret key, is used to determine
how the message is modulated, inserting additional randomness into the system while still
allowing the receiver to decode the message [4].

While this approach does improve the security of the message transmission, this combined
scheme requires carefully choosing a threshold value ¢ for modulation in order to make sure
that the modulation contains enough noise to mask the original message while not adding
too much noise to the audio. More importantly, the use of the Vigenere cipher presents an
opportunity for improvement, as it is not a secure encryption scheme by itself.

2 Design Goals

Audio steganography techniques are most commonly evaluated on transparency, capacity,
and robustness. Transparency refers to how hidden the steganography is to listeners; a
human ear should not be able to differentiate between the original audio and the modified
audio. Capacity refers to the average number of bytes of ciphertext that the steganography
method can transport per byte of audio data. Finally, robustness refers to how well the
hidden information survives common audio processing techniques (i.e. compression, noise
addition, or filtering).

We extend these properties to identify a set of properties that an effective cryptographic
audio steganography should satisfy:

1. Transparency: The stego audio should be aurally indistinguishable from the cover
audio. By aurally indistinguishable, we mean that humans should not be able to hear
the difference between the stego audio and the cover audio.

2. Security: The altered bits of the stego audio should look computationally indistin-
guishable from a random alteration of the same bits in the cover audio. That is, to an
adversary, the alteration of bits in the stego audio should look random. In the case of
audio steganography, since most bits might be left untouched and we want the stego
audio to sound like the original audio, we only look at the altered bits themselves (for
example, the least significant bits for LSB) instead of all of the bits in the audio.

3. Recovery Complexity: An attacker should not easily be able to recover the en-
crypted ciphertext from the audio. This principle is included to prevent "harvest now,
decrypt later’ attacks, where adversaries could potentially store the altered stego audio
file indefinitely to try to decrypt the audio.

4. Robustness: If the stego audio is tampered with, the receiver should be able to recover
very little, if any, of the original message. This principle is included to prevent MITM
or impersonation attacks.

Although the approaches described in Section achieve transparency and some, such as
DSSS, achieve robustness, they fall short because the only knowledge an adversary needs to
decrypt the secret message is the steganographic procedure. Furthermore, these methods
encrypt the message in the audio unencrypted and sequentially, meaning that given just
a small portion of the stego-audio allows the corresponding portion of the message to be
decrypted, and because language is not uniform, much less cryptographically secure, so the
security constraint is also not satisfied.

In order to better meet these goals and scope our implementation, we assume and require
that the cover audio is not too synthesized, such that specific bits in the audio are not
predictable. When audio is more professionally edited or more fully synthesized, noise is
often removed, such that periods of silence are fully silent. This makes it more difficult to
satisfy our properties. Specifically, transparency poses a larger concern, since it is easy to
tell the difference between complete silence and a small noise. Audio from voice recordings
tend to have sufficient white noise (40-60 dB) for our use cases.

3 System Design

As a proof of concept of how a cryptographic audio steganography scheme could work, we
designed and implemented a scheme that satisfies many of the intended goals specified above.
For this implementation, we use AES and assume that the sender and receiver both know
the encryption/decryption key.

The encryption scheme consists of two main layers, given a secret message m. For ease of
explanation, we describe the layers in the opposite order they are applied:

e Layer 2: We separate m into data chunks of 16 bytes each. We will eventually hide
the chunks in random locations in the original audio. To allow the receiver to find the
data chunks in the correct order, we form a linked list by associating each data chunk
with a standard 8-byte pointer to form a node. The first chunk is slightly different: it
contains an 8-byte nonce for the AES cipher (more on this later) and 8 bytes for the

6

length of the message in place of the 16-byte data chunk. This way, all the nodes are
24 bytes long. We choose random locations for the nodes in the audio file, except for
the first node, which is placed at the beginning of the audio file, so that the receiver
has an entry point to the linked lists. Then, we place the nodes in the least significant
bits of the original audio file. Optionally, we can randomly change the other least
significant bits that would not have otherwise have been affected, in order to remove
any detectable patterns in the least significant bits, which makes it computationally
impossible to detect which bits store data.

e Layer 1: We use AES in counter mode to encrypt our data. This way, the length of
the data does not change. The cipher uses a public nonce, which we leave unencrypted.
Everything else that we place in layer 2, including the length of the message, all of the
data chunks, and all of the pointers, are encrypted. A big advantage to counter mode
for AES is that we can decrypt byte-by-byte, instead of needing the full message at
once. This property is necessary, because we must decrypt the pointers one at a time
to follow the linked list.

The receiver can decrypt the message by starting from the first chunk and decrypting the
length and first pointer. They can then follow the pointer to the location of the next message
chunk, decrypting the associated message data and attached pointer again. This process is
repeated until the length of the decrypted message matches the expected length from the
first chunk. Then, the receiver can concatenate the data chunks together in order and recover
the original message.

3.1 Implementation

Our code can be found here: https://github.com/dantaxyz/audio-stegol

3.2 Strengths

Our implementation has several strengths. First, it has high capacity. Most modern audio
files have 44.1kHZ sampling rate, which means that 44100 audio samples are present for
every second of audio. This then means that a three minute audio file includes 7.94 million
least significant bits. Each of the nodes are 24 bytes long and encode 16 bytes of data, which
means that in total, we can transmit over 661 kilobytes of data.

Additionally, our implementation improves upon the effectiveness of existing audio steganog-
raphy approaches as framed by the properties outlined in section 2. That is, because we use
LSB encoding in the second layer, we satisfy the transparency property. This is because only

https://github.com/dantaxyz/audio-stego

the least significant bit is changed in every sample, and when every sample is 32 bits, this
last bit will be insignificant, especially when taking into account our assumption that there
will be some inherent noise in the audio file. The security property is also satisfied, because
AES is used to encrypt the original message.

On the recovery complexity front, even though an adversary can recover the least significant
bits from the audio, the encrypted message itself is stored in chunks across the audio file,
which makes it harder for an adversary to piece the original message back together. In order
to store enough information to encrypt the entire message, an adversary must store all the
least significant bits of the audio. If the least significant bits are tampered with in the audio,
the receiver will either be able to recover the entire message or it will fail to recover the
message at all, because if any pointer is tampered with, the remainder of the decrypted
message will be incorrect.

Lastly, it is easy to extend this implementation to other audio steganography approaches.
That is, instead of using LLSB in order to insert the bits into the audio file, we could use the
altered bits with other techniques like Echo Hiding or DSSS in order to further improve on
the security of the algorithm. Some extensions will be further explored in section 4.3.

3.3 Limitations

Given that our implementation is largely a proof of concept, there are a few limitations
that need to be addressed in order for it to be more complete. First, our implementation
only works on uncompressed audio files, such as .wav files. This limitation has a few conse-
quences. Particularly, it is harder to apply to more general audio files, as many audio files
are compressed, in .mp3 format or otherwise. Additionally, uncompressed audio files are
generally larger than compressed audio files, which makes processing time slower.

The current implementation of the system also does not work when audio is being streamed
live, as the encrypted message chunks can be inserted out of order in the actual audio
file itself. This limitation prevents users from sending covert messages through their audio
signals while they are in communication with each other.

Furthermore, if the cover audio has locations where the least significant bit is predictable,
it can be hard to satisfy the transparency property, as changes to the audio can easily be
distinguished by the human ear. That is, if there is a period of complete silence, even altering
the least significant bit can make it easy to tell that the cover audio has been altered.

Lastly, given our current implementation, an adversary that knows how the message was
encrypted can just retrieve the least significant bits from the audio to decrypt later or to
delete from the actual audio file, which can be harmful in use cases like communication, as

the receiver might not get any message at all. Furthermore, even though compression and
tampering will make it impossible to recover the original message, the receiver may not be
able to detect tampering surely (although nonsense pointers that loop or point outside the
audio file can sometimes be sufficient to detect tampering). This problem arises because of
our use of LSB, which inserts each bit of the encrypted message as is into the audio file.

4 Extensions

To address some of the limitations in our current implementation, we propose a few exten-
sions of our algorithm as potential future work.

4.1 Using DSSS instead of LSB

As mentioned in the limitations section, while LSB is easy to implement and use, an adversary
can easily retrieve the altered bits of the stego audio by just taking the least significant bit of
every sample. Furthermore, the message can easily be written over; an adversary can simply
write over all least significant bits with Os to delete the secret message completely.

In order to address this limitation, we can change how we insert the encrypted message
chunks and pointers back into the cover audio in layer 2. Instead of using LSB, we could
potentially use Direct Sequence Spread Spectrum encryption. Compared to LSB, DSSS
would be much more resistant to compression and would make it harder for a man-in-the-
middle adversary to destroy the message. In particular, we can similarly encrypt and decrypt
blocks using DSSS, along with pointers to the next block.

Even further, by using the method described in [3], we can encrypt the secret message into
the frequency transform of the audio instead of the audio itself, which would make the
encryption less noticeable and harder to destroy.

4.2 Supporting Live Streaming

In order to support live streamed audio, we can change the implementation to ensure that
the chunks are placed in the order that they should be decoded in within the audio. So,
instead of choosing random locations for each of the nodes in the cover audio, we can place
the randomly generated locations in increasing order, then insert the nodes according to this
ordered list. This ensures that the receiver does not have to rewind the streamed audio at
any point to retrieve a message chunk.

4.3 Authentication

The receiver in our implementation simply follows pointers until they get to the message
length. However, tampered stego-audio is still difficult to detect if an adversary fills the
LSBs with random values. If the sender and receiver share an authentication key, the sender
can insert this authentication key in some manner after the final block, and this will act as
a signature that verifies that the stego-audio was not tampered with.

4.4 Public Key Encryption

In our implementation, we used AES, which assumes that both the sender and the receiver
have the shared private encryption key. Because our encryption scheme is separated from
the rest of the implementation, a public key encryption scheme like RSA can be used in
place of AES for greater security, at the cost of requiring more compute to calculate. For
situations in which the stego audio is being live streamed, using a quicker encryption and
decryption scheme like AES can be more appropriate still, as the receiver needs to be able
to decrypt the pointer to the next encrypted data chunk before it is streamed in the audio
itself.

5 Acknowledgements

The system design in our paper was brainstormed together as a group. The implementation
of the system design was mostly done by author 2, while authors 1 and 3 examined strengths
and limitations of the design compared to known methods, and considered extensions of the
current design to address these limitations.

We would like to thank the 6.5610 course staff for their guidance on the project. Specifically,
we would like to thank our TA Leo for meeting with us and providing us helpful comments
on what goals might be important and what could be improved about our design.

References

[1] F. Djebbar, B. Ayad, K. A. Meraim, and H. Hamam. Comparative study of digital audio
steganography techniques. FURASIP Journal on Audio, Speech, and Music Processing,
(25), 2012.

10

[2] D. Gruhl, A. Lu, and W. Bender. Echo hiding. In Information Hiding: First International
Workshop Cambridge, UK, May 30-June 1, 1996 Proceedings 1, pages 295-315. Springer,
1996.

[3] D. Kirovski and H. S. Malvar. Spread-spectrum watermarking of audio signals. IEEE
transactions on signal processing, 51(4):1020-1033, 2003.

[4] A. A. Krishnan, C. S. Chandran, S. Kamal, and M. Supriya. Spread spectrum based
encrypted audio steganographic system with improved security. In 2017 International
Conference on Circuits, Controls, and Communications (CCUBE), pages 109-114, 2017.

11

	Background
	Audio Steganography Approaches
	Least Significant Bit encoding
	Echo hiding
	Spread Spectrum

	Design Goals
	System Design
	Implementation
	Strengths
	Limitations

	Extensions
	Using DSSS instead of LSB
	Supporting Live Streaming
	Authentication
	Public Key Encryption

	Acknowledgements

