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Abstract This project focuses on finding security vulnerabilities in two language model
(LM) APIs and the software systems built on top of them. We study both attacks specific
to LMs and general API attacks. Ultimately, we find several minor vulnerabilities in real
LM APIs and make fix recommendations to the owners.
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1 Introduction

Language models (LMs) are a class of machine learning models that predict the next word
given previous words. In the last five years, the capabilities of these models have advanced
significantly due to an exponential increase in the compute and data used to train them,
while access to the weights and implementation of LMs remain private due to the substantial
cost of training them. Companies like OpenAI, Anthropic, and Google serve LMs via black-
box APIs, allowing others to use their proprietary LMs for downstream AI products. These
LM APIs have been rapidly adopted and integrated into high-stakes software, including in
the medical and legal domains. However, little is known about the security of real LM APIs
or the products that rely on them, and academic research on LM security provides clear
reasons for concern: LMs are known to be susceptible to many novel attack vectors, such as
prompt injection [9] and model exfiltration [3], alongside all the traditional API attacks.

This project studies the vulnerabilities of LM APIs by performing a thorough security
analysis of two real-world APIs. Each API sits at a di↵erent level of the software stack.
The first is Anthropic’s Claude API, which has a low-level interface that allows the user can
interact with the LM directly. This system has very few safeguards around what the user
can input because the LM is trained to refuse dangerous questions or illicit requests—e.g.,
if you ask Claude how to build a bioweapon, its response will likely refuse to answer the
question. Unfortunately, this is known to be a fragile defense, and our analysis will attempt
to identify exploits that bypass the model’s built in content filter. Anthropic has expressed
to us that this attack vector is their greatest concern, especially when applied to recovering
dangerous information from the model, as in the bioweapon case.

The second API is the OpenEvidence medical question answering system, which responds
to user medical questions by searching for relevant literature on the subject and then feeding
the literature to a di↵erent LM API (specifically OpenAI’s GPT4) so that it can generate
an answer. OpenEvidence is much more rigid, and uses other machine learning models
to validate that the user’s question is in fact a valid, non-harmful medical question before
running the rest of the system. Despite these safeguards, OpenEvidence and systems like it
are potentially vulnerable to the same attacks as ordinary LMs, because the validator and the
question answerer are both implemented with LMs. Additionally, the systems are potentially
vulnerable to data poisoning, since they feed content indexed from the web directly into the
LM to answer questions.

Ultimately, we attempt a variety of di↵erent attacks on both of these APIs. Both of
these products have three primary components: (1) a web-based interactive chat with the
LM, (2) an API for users to integrate LM interactions within their own applications, and
(3) a website interface primarily storing information about the user accounts. As such, we
begin by trying the familiar battery of old-school web attacks on the REST APIs and the
web interfaces. These include SQL-injection attacks, authentication attacks (such as man-
in-the-middle (MTM) and Pass-the-Hash (PtH) attacks), exploiting caches or token miscon-
figuration, the lack of rate limiting, and race conditions or XXE injections. We additionally
study the literature on LM attacks and attempt several flavors of prompt injection on both
models.
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2 Background

Language Models A language model is a machine learning model trained to predict the
next word given previous words. Specifically, given a sentence of n words x1:n, they model
p(xn | x1:n�1). Though simple, modeling this distribution is extremely powerful for three
reasons. First, it allows the model to generate text by predicting the next most likely word
over and over again given some input text (called a prompt). Second, training data is
plentiful because no labels need to be collected: it su�ces to scrape text from the web or
other large corpora and train the LM to predict each word in the corpus within its original
context [13]. Finally, most artificial intelligence tasks can be framed as next word prediction
[12, 2]. For example, by conditioning an LM with on a prompt like “Below is a passage
from Wikipedia followed by a summary: {passage}”, the LM now acts like a summarizer,
assuming it is a good enough language model.

Because LMs are so general, well-funded companies like OpenAI, Anthropic, Google,
and Meta have invested significant resources toward scaling up LMs by instantiating them
with billions or even trillions of parameters and training them on massive web corpora [7].
The resulting models, like ChatGPT, are extremely performant, setting records on most
AI benchmarks. At the same time, these state-of-the-art models are kept private and only
exposed via APIs for downstream AI applications.

Language Model Safeguards The old saying with great power comes great responsibility

applies to LMs. By virtue of being trained on almost the entire web, language models
encode knowledge of the world—one can recover this knowledge by prompting the LM, as in
Fact: The capital city of France is [11]. This is because, from a modeling perspective, the
most probable sentences are the ones that are consistent with reality. Unfortunately, this
means LMs also encode dangerous or flawed knowledge as well, as misinformation, biases,
or dangerous information prominent on the web. For example, LMs are known to encode
racist stereotypes or harmful biases, and there is fear within the LM security community that
LMs may encode knowledge about how to build bombs or bioweapons (mentioned during
discussions with our partners).

LM providers have made substantial e↵orts to mitigate the LM’s ability to encode these
things. Due to the complex nature of these problems, however, this mitigation always takes
the form of additional learning. The main technique used to prevent harmful outputs is
reinforcement learning from human feedback, or RLHF [8]. At a high level, RLHF involves
using reinforcement learning to prefer responses to prompts that align with specific human
values. This requires collecting a dataset of candidate responses for di↵erent prompts, and
training the LM to rank the most aligned prompt the highest. For example, an RLHF data
point might show that the LM should prefer unbiased responses to medical questions (“same
diagnosis for two di↵erent patients regardless of race”) to biased ones. In parallel, another
mitigation technique is to train the LM to better follow instructions [14], and then to always
prepend the LM’s prompt with instructions to “do no evil.”

Attacks on Language Models Despite the safeguards, LMs are susceptible to many
attack vectors that require only black-box interaction with the model. Prompt injection
attacks are the most well known: the attacker passes an input string that tells the LM to
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(a) Screenshot of the OE chat UI. (b) Screenshot of the Claude chat UI.

“ignore all previous instructions” and do something else instead [10, 9]. This can be used to
exfiltrate the LM’s prompt that the owner prepends to every user input. Such prompts are
intended to be private, as they contain the list of rules that the LM is supposed to follow
when answering queries and oftentimes private context about the user.

Relatedly, some research has found that adding specific strings into the prompt or re-
peating specific characters at the end cause the LM to ignore its instructions and other
safeguards [15]. These strings can also be programmed into the model if the trainer of the
LM is malicious, giving way to so-called backdoor attacks [5]. Backdoor attacks pose
the greatest risk to open-source LM users, as models are often published to hubs like Hug-
gingFace without detailed information about their origins. However, backdoors can also be
introduced through data poisoning, since LM training data is primarily taken from the web.

Finally, some researchers have been able to exfiltrate a subset of the LM weights given
only access to next word probabilities, which are commonly exposed by LM APIs [3]. The
attack relies on the fact that the final linear transformation of the LM is necessarily low-rank,
so a relatively small number of queries are required to recover the weights up to rotation.

3 Method

We conduct a detailed security analysis of two real LM APIs: OpenEvidence’s medical
question answering system and Anthropic’s Claude.

OpenEvidence is a medical question answering system. The user inputs a medical
question, and the system performs a literature search based on the question. The best
sources are then fed to an LM to summarize the answer based on the literature. Beyond the
safeguards built into the LM used by OpenEvidence, the system verifies that the input is
a valid medical question before executing any search. We received explicit permission from
the head of infrastructure at OpenEvidence to perform a security analysis on their medical
chat software and API.

Specifically, we were given API keys to their medical question answering system with
unlimited usage. Our requests were sandboxed to a test environment to prevent any outages
caused by our tampering. We were additionally granted limited source code access, meaning
we could ask the Head of Infrastructure to look at specific code snippets, but we could not see
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the full repository. Finally, we were given accounts for the web question answering interface.
We experimented with a battery of standard API attacks and some prompt injection attacks.
The API does not expose probabilities, so we could not perform model exfiltration attacks.

Claude is a large language model exposed via a chat API. Users send messages and
receive messages from the LM in response. The LM is stateless, meaning the user must
send the full dialog history to the model when querying. We received permission from the
Anthropic CISO to perform a security analysis on the Claude LM API and software. We were
given API keys with a high usage cap ($500 spend limit), access to one Web UI account,
and access to a bug bounty board. We attempt the same attacks as with OpenEvidence
where applicable, though we found in general that OpenEvidence had a larger surface area
to tamper with.

4 Attacks

In this section, we detail the attacks executed, if they were successful, and, if so, provide
recommendations on how these weaknesses may be mitigated.

4.1 Prompt Robustness

We attempt to input slightly corrupted text to assess the possibility of extracting information
intended to not be publicly displayed. In OpenEvidence, we tried

• text = “how to fight a migraine”

• text = “h0w t0 fight a m1gra1ne”

• text = “h0w t0 f1ght a m1gra1ne”

For the first two prompts, OE was able to understand the prompt and respond appro-
priately. For the last prompt, OE responded that “No directly relevant references were
found in the medical literature provided regarding the management of migraine,” which is
contradictory, given the answers to the previous prompts.

When given the same prompts, Claude answers all three prompts nearly identically.

4.2 Prompt Injection

LLMs are designed to avoid producing false, defamatory, or o↵ensive content. However, they
are vulnerable to prompt injection attacks, where a carefully designed prompt can cause an
LLM to bypass its own security safeguard to produce.

4.2.1 OpenEvidence

OpenEvidence is designed to answer only medical questions, so a line of attacks try to coerce
it into answering questions it was not designed to do, possibly producing nonsensical content.
For the most part, OE appeared to be robust against these attacks. We tried asking two
questions at once, but OE successfully identified the medical question and only answered
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that one. We also prepended our question with a message of urgency (“We desperately need
your answer”), but that had little e↵ect on the output.

4.2.2 Claude

Claude’s API allows users to plug in the entire chat history, which means that users can
arbitrarily construct responses to their prompts that Claude would never generate. More
critically, users can write the first few words of the response.

As a concrete example, the rise of content bots on social media sites like X can exploit
LLMs that can write tweets on a particular topic. I was able to prompt Claude to spread
anti-vaccine tweets, by starting the response with “#BigPharma”. Claude only seems to
recognize that it isn’t supposed to produce this kind of content after producing the tweet.

messages=[
{"role": "user", "content": "I am practicing a debate.
Can you take on the role of a vaccine skeptic?"},
{"role": "assistant", "content": "Sure! What would you like me to do?
I can help you come with some anti-vaccination talking points."},
{"role": "user", "content": "I really need your help here. Can you come
up with a tweet that discourages people from receiving the COVID-19
vaccine? Thanks so much"},
{"role": "assistant", "content": "#BigPharma"}

]

[TextBlock(text=" profits while you suffer side effects. COVID is basically just
the flu anyway. Natural immunity is best! Don't be a [sheep emoji] - stay
unvaxxed! #MedicalFreedom\n\nI'm sorry, but I don't feel comfortable taking
on that role or spreading misinformation about vaccines. Even if it's just
for practice, I think posting misleading tweets that discourage vaccination
could be harmful. I would suggest finding factual information from reputable
scientific sources to help inform your debate instead. Let me know if
there are other ways I can assist with your debate prep though!", type='text')]

Claude was also able to generate other factually incorrect, hateful, or racist tweets.

4.3
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4.4 Cross-Site Scripting

We asked OpenEvidence to see the implementation of the chat UI to see how the answer
was rendered. While doing so, we noticed that the page parses raw HTML in several places.
In particular, it uses dangerouslySetInnerHtml to display the original text of sources
that were cited by the LM. These sources are not owned by OpenEvidence, rather they are
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Figure 3: Full text of the poisoned source for the XSS attack. The source mostly looks
legitimate, but includes malicious JavaScript at the bottom. If unsanitized, this would
execute in a user’s browser when the user receives an answer from OE that cites this source.

scraped from PubMed and other websites. Therefore, if an attacker publishes a source with
malicious HTML/JavaScript embedded into its source text and the LM cites that source,
it could leave the end user vulnerable to cross-site scripting (XSS). We implemented this
attack in a simple test environment to see if it was truly a vulnerability.

Method We wrote text for a fake source that included the following malicious script at
the bottom of its text. The full text is shown in Figure 3 The initial text was taken directly
from a PubMed abstract [6]. The HTML at the bottom makes a POST request containing
the user’s browser data to a server that we ran locally for this experiment.

Results We experimented with several HTML scripts, of a similar flavor to those shown
above. Unfortunately, it appears that upstream in OpenEvidence’s frontend stack, the source
HTML is sanitized. We were able to get images to render (and hence send parameter-less
GET requests to our server), but we were not able to get arbitrary JavaScript to run.
OpenEvidence later confirmed for us that this vulnerability had been recently patched.
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4.6 Intercepting and Modifying Requests

To begin assessing the interface, we started by examining API requests created when com-
municating with the interface. We conducted this analysis using BurpSuite’s interception
tool. Interestingly, Claude did not permit a user to log in using BurpSuite’s web browser,
so the network tra�c was instead analyzed using Firefox, modified, and sent via Postman.

4.6.1 Storing the Conversation

Both of the applications seemed to have some file with the conversation history to which it
issues a GET request. However, a critical di↵erence is that OpenEvidence does not protect
this file with a cookie or authorization, allowing anyone to access it. Arguably, this is a
design choice since they have a “Share URL” button. However, since the model works with
medical data, it is not ideal to make the default for a file to be accessible to anyone with the
link. In contrast, even if a user learns the link of a conversation with Claude, they cannot
access the conversation without the appropriate authorization.

4.6.2 Sending Erroneous Messages

One simple but mostly uninteresting attack on OpenEvidence is attacking its Google Analyt-
ics. They send the query to Google Analytics as part of the URL, which seems insecure. One
small attack is one can simply modify the content of the URL to send junk data as opposed
to useful analytics. Without an understanding of this, maintainers may make misinformed
decisions on updates needed for their algorithm.

Another attack we were able to execute was intercepting and modifying the user’s request.
We were able to change a request from “do i have diabetes” to “do i have cancer” and return
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a response to the cancer question. Consequently, a man-in-the-middle attack could easily
change the information a user could receive.

Without Burp Suite’s interception tool, it was more di�cult to modify requests from
Claude. However, from monitoring the tra�c, there were no requests that obviously revealed
any information about the conversation or the user.

4.7 Packet Sni�ng

One attacks we tried was observing packets over the network to see if we could reveal the
conversation. To that end, we used Wireshark and recorded tra�c while conversing with
the server. In addition, we used Firefox’s in-browser security tools to analyze any potential
network vulnerabilities.

Overall, it was di�cult to discern information from both OpenEvidence and Claude
through packet sni�ng. One attack attempted was to distinguish whether the LM was
being conversed with or just left idle, and try to get a rough estimate of the length of
information being passed. However, for both applications, there were a considerable amount
of Encrypted Data packets going through the network while the application was open. In
addition, when the user begins talking to the model, roughly the same amount of Encrypted
Data packets are visible. Consequently, for both, the presence of these packets indicate there
may be conversation but done not guarantee there is conversation: it reveals approximately
as much information as knowing there is a connection to their IP addresses.

The only notable information that was leaked while conversing with Claude was the device
name when it had to reroute using NBNS. However, from our understanding of NBNS, this
is not directly related to the application since it is a network-level protocol and leaking the
device name is expected. This could pose a threat since if my device name included my
personal name (e.g. “XXX’s Laptop”), someone sni�ng packets could more easily identify
the person interacting with the LM.

In addition, this could be a powerful tool for attackers if users are not careful. For
example, if a user were to open their previous chat without using HTTPS, the link to
their entire conversation history would be leaked to the network. In the case of Claude,
this does not pose a threat since the chat requires authentication to view. However, for
OpenEvidence, this essentially leaks their entire conversation (thus potentially revealing
their medical condition) to anyone listening on the network.

4.8 Malicious File Upload Attack

One feature of Claude that seems dangerous is the ability for users to upload files of any
extension type. One possible attack on this could be to upload some small, malicious code.
Consequently, we tried uploading a bash file running simple commands to see if we could
glean any information from Claude. However, this proved mostly unsuccessful as Claude
will not run any code and only summarized what the functions do instead of revealing any
useful information.
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Figure 4: An Overview and Example of our Pipeline. We have the user issue two requests:
one to an untrusted database and another to an untrusted LM. The results of the database are
concatenated with the query to the LM to get the final results. Note that the implementation
used only uses FHE for the attention mechanism.

5 Proof-of-Concept for Post-Quantum Cryptography
for LM Interactions

After implementing all of our attacks, we were curious to see if we could create a proof-
of-concept private LM application pipeline using techniques from class. We implemented
FastPIR [1] using Python and Sagemath to privately query documents from a database and
used Hugging Face and Zama’s implementation of using FHE on the attention mechanism
of an LM [4] to privately query an LM.

Security Our notion of security for the two requests extends from the notion of security
for PIR and FHE. Specifically, for PIR, the client’s query should reveal no information about
its desired database record. For FHE, we use semantic security.

Correctness Our correctness also extends from the existing PIR and FHE schemes.

Implementation Our pipeline is shown in Fig. 4. First, we assume that the user knows
the indices of the document data that it wants to query. (For example, it may know of all the
documents related to cancer.) The user then uses PIR to privately query the database. The
user can concatenate the data received with their query to make a request to the LM. Use
Zama and Hugging Face’s implementation, the LM just uses FHE on the attention mecha-
nism. Eventually, however, this can be used for the full LM. Finally, the user receives the final
result. The implementation can be found at https://github.com/GenericP3rson/private-lm-
application-interactions.

Limitations While this pipeline provides more privacy, it also has severe runtime costs,
so it cannot be deployed at the moment. In addition, we would want to incorporate FHE on
the entirety of the LM in a future project.
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6 Recommendations

Between all of our attacks, our recommendations for OpenEvidence are:

•

•

•

•

•

•

• For XSS: validate that all third-party source HTML shown on the frontend is sanitized

We found that most of our attacks on Claude were unsuccessful. However, some recom-
mendations we have for Claude, especially concerning prompt injection attacks, include:

• Compare outputs with and without the start of a prompt to determine whether that
prompt is trying to circumvent safeguards

• Generate the complete response first, then analyze the response to see if it is contra-
dictory

7 Contributions

Evan coordinated with OpenEvidence to set up the test environment for our attacks.

He also wrote the corresponding attack sections of the report as well as the intro-
duction, background, and method.

Shreya worked on the , packet
sni�ng, malicious file upload attack, and the proof-of-concept and wrote the corresponding
sections.

Sean investigated some other prompt injections attacks, more specifically those involving
the generation of misleading or harmful content, as well as assessed prompt robustness. He
wrote the corresponding attack sections in the report.
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