
Safe Multi-Party Semantic Agreement via FHE Word Embeddings

Maria Chrysafis
Massachusetts Institute of Technology

m4c@mit.edu

David Hu
Massachusetts Institute of Technology

davidhu@mit.edu

Miguel Tulla
Massachusetts Institute of Technology

mtulla@mit.edu

Edward Wan
Massachusetts Institute of Technology

edw21@mit.edu

1. Abstract

This paper presents an approach towards a multi-
party semantic agreement protocol constructed using
fully homomorphic word embeddings. It is not diffi-
cult for two or more parties to compare text for ex-
act equality without revealing their text—the parties
can simply compare a one-way hash of their samples
through some suitable protocol. However, we aim to
construct a protocol that relaxes the condition of exact
equality into one of “semantic agreement.”

In our approach, we quantify semantic agreement
by comparing the word embedding values—as de-
termined in LLMs (large language models)—of the
party’s text. We then employ pre-existing FHE (fully
homomorphic encryption) computation libraries to
compute word embeddings and semantic agreement
on the ciphertext. By encrypting the entire end-to-
end computation from text to embedding via FHE, our
scheme ensures that sensitive information (even in-
cluding the embeddings themselves) is not leaked dur-
ing computation. Ultimately, we can securely gauge
semantic agreement of samples of text by employing
FHE in computing the dot product of two word em-
beddings to calculate their cosine similarity.

Our results demonstrate that FHE introduces mini-
mal noise to the word embeddings, preserving the se-
mantic information effectively. Despite the increased
computational complexity of computing word embed-
dings using FHE compared to traditional methods, the
resulting agreement protocol operates smoothly and
efficiently.

Keywords: Multi-party computation, Semantic

agreement, Fully homomorphic encryption, Word em-
beddings, Cosine similarity, Large Language Models.

2. Motivation

There are many situations where multiple parties
would want to ascertain the similarity between indi-
vidually produced texts without revealing said texts to
each other. For instance, take the case of two par-
ties determining whether they should collaborate when
valuable ideas or intellectual property is involved.

Suppose two parties both have solutions or ideas for
an open-ended problem, and they would like to deter-
mine if collaborating is in each of their best interest.
Naturally, neither wants simply reveal their idea to the
other for fear of it being replicated without acknowl-
edgment and compensation. However, collaboration
could be much more productive compared to each of
them pursuing similar ideas independently. Our pro-
tocol provides a way for these parties to determine if
collaboration is in their best interest by securely de-
termining the semantic similarity of text that describes
their ideas in detail.

In general, a secure semantic agreement protocol
proves useful between a set of parties when the fol-
lowing conditions are met:

1. Requirement for Secrecy: It is disadvantageous
for Party A to plainly share its text with Party B
if Party B does not already have some knowledge
that would allow it to produce text that could be
considered similar to that of Party A.

2. Bilateral Cost of Secret Leaking: Condition 1
must be both ways; i.e., it must also be disad-

1

vantageous for Party B to plainly share its text to
Party A.

3. Mutual Advantage in Agreement: There exists
something mutually advantageous—be it collab-
oration or simply sharing knowledge—for Party
A and Party B if they both have knowledge that
prompts them to produce similar text.

3. Background on Fully Homomorphic En-
cryption

In traditional encryption schemes, encrypted data
cannot directly be operated on without first decrypt-
ing it. However, fully homomorphic encryption (FHE)
enables direct computation on encrypted data. In prac-
tice, this means that clients can outsource computa-
tions to external entities that incorporate FHE by pass-
ing in their encrypted data, having the external en-
tity perform the requisite computations on this en-
crypted data, and then decrypting the output, all with-
out leaking any sensitive data to the entity at any point
throughout the computation.

A typical issue plaguing FHE schemes is that of er-
ror propagation. Many encryption schemes are based
upon the Learning with Errors (LWE) assumption, and
incorporate a small, random error term into the cipher-
texts to ensure security. However, as computations
(such as additions and multiplications) are applied to
ciphertexts, the random errors compound, which often
limits the depth of computation workflows that FHE
schemes can support.

3.1. FHE Schemes with Arbitrary Operations

In [3], Gentry introduces a seminal procedure
known as “bootstrapping,” with which he can construct
a fully homomorphic encryption scheme capable of
supporting arbitrary-depth computations without sac-
rificing security. In practice, as any computable func-
tion can be represented as a Boolean circuit, Gentry’s
construction implies that any computation should be
theoretically performable with fully homomorphic en-
cryption.

In practice, however, the computation and memory
overhead associated with homomorphically encrypt-
ing operations becomes infeasible for larger and more
complex Boolean circuits.

3.2. Concrete ML

The open-source startup Zama AI has constructed
practical FHE solutions to many problems with their
FHE compiler Concrete ML [1]. Concrete ML oper-
ates with TFHE, which stands for fully homomorphic
encryption over the (discretized) torus, to speed up
computations. Of particular interest to us is that Con-
crete ML can compile many common machine learn-
ing workflows into FHE.

It’s perhaps easy to see how linear functions such
as matrix multiplications can be compiled into FHE,
as they can easily be expressed as a combination of
additions and multiplications. However, much more
challenging is the analogous task for arbitrary non-
linear functions, which are highly prevalent in neural
networks, and particularly in LLMs.

The approach employed by Concrete ML to com-
pile an arbitrary function is as follows:

• First, apply quantization on the function. This
means compressing the input and output space
(typically consisting of 32− or 64−bit float val-
ues) into a much smaller, discrete space (e.g.
8−bit values corresponding to [−128, 127]).

• Express the resulting quantized function as a
lookup table (TLU) over the reduced input space.

• Convert the TLU into a Boolean circuit and use
the TFHE scheme to fully homomorphically en-
crypt the computation of the circuit.

Note the inherent tradeoff between having a smaller
TLU (and resulting Boolean circuit) or a smaller quan-
tization error incurred. Indeed, as we discretize the
function more, the input space is reduced but the re-
sulting quantized function becomes a rougher approx-
imation of the original.

Also note that in Concrete ML’s implementation of
lookup tables, there is an inherent ±1 error associated
with each operation; the probability of these errors oc-
curring can be controlled with the p error param-
eter. Low p error may increase accuracy, but they
naturally decrease performance.

3.3. FHE LLMs

In [2], Frery describes a system to perform infer-
ence on the GPT-2 large language model that uses an

2

https://www.zama.ai/
https://docs.zama.ai/concrete-ml

implementation of an attention layer encrypted with
FHE. Under this system, clients performing inference
using GPT-2 are expected to take their input (a list of
words or tokens), run it through the layers preceding
the attention layer, encrypt the resulting output, pass
it through the FHE-encrypted attention layer, decrypt
the output, and then finally pass the result through the
remaining layers.

This article served as the original inspiration for
our project. We attempted to extend the implemen-
tation presented by Frery—which did not compile the
embedding layer to FHE—and realized that we could
leverage the FHE-compiled embedding into the se-
mantic protocols we describe in this paper.

4. Background on Language Model Construc-
tion

4.1. n-gram Model

In the n-gram language model, we construct a func-
tion f which generates a probability distribution for xi
given the previous n words, xi−1, xi−2, . . . , xi−n, i.e.
P[xi|xi−1, xi−2, . . . xi−n].

For the trivial model n = 0, the 0−gram lan-
guage model simply learns the underlying frequencies
of words. However, as n grows, the language model
learns to incorporate contextual clues from the previ-
ous words, including semantic relationships between
words. The typical tradeoff as n grows too large is that
there are more possible n−grams, which translates to
a larger potential vocabulary size and demands a larger
training dataset as a result.

One strategy to allow n−gram models to learn se-
mantic relationships between neighboring words is via
word embeddings.

4.2. Word Embeddings

A word embedding represents words as a high-
dimensional vector of floating point numbers in a way
that conveys semantic meaning. By mapping from a
discrete vocabulary of words to a higher-dimensional
set of tunable vectors, the n−gram model can learn
an embedding of the vocabulary that is semantically
meaningful. For instance, the difference between the
word embeddings of queen and girl should be sim-
ilar to the difference between the word embeddings
of king and boy. In general, similar words should

correspond to embedding vectors which are approxi-
mately parallel (higher dot product), while unrelated
words should correspond to embedding vectors that
are more or less orthogonal (zero dot product).

Although word embeddings are often touted as be-
ing one-way, this is not entirely true: this is why A and
B cannot just publicly post their word embeddings to
compute their cosine similarity. See, for instance, [5]
and [4] for potential algorithms to invert word embed-
dings.

4.3. Training

We trained an n-gram language model with the ar-
chitecture given below:

This n-gram language model takes in the embed-
dings of the n previous words and passes it through the
following layers described in the architecture to get a
probability distribution over the entire vocabulary for
the word that follows.

Below are the key parameters of our model:

• Vocabulary Size = 7472

• Embedding Dimensions = 100

• Context Size = n = 2

Our model was trained to learn the semantic rela-
tionships between words by analyzing n−grams from
a large text. Our dataset was the book Great Gatsby,
which has 47, 094 words.

Training took 2 hours and 38 minutes, suggesting
that with more computational power we could train our
model on significantly larger texts and with larger con-
text sizes.

5. Semantic Agreement Protocols

With the requisite background on word embeddings
and fully homomorphic encryption schemes, we now
move on to discuss our multi-party semantic agree-
ment protocol constructions. In our assumed setup,
there are two parties A and B who wish to measure
the cosine similarity of their plaintext in a way such
that the following conditions are met:

3

• Inter-party Security: Neither A nor B learns any-
thing other than the cosine similarity between
their words.

• External Security: No external parties learn any
information about the words of parties A and B,
including their plaintext values, embeddings, or
even the cosine similarity between them.

• Correctness: At the end of the protocol, parties A
and B each receive a value which is the correct
cosine similarity value, within some acceptable
margin of error.

5.1. A Simple System with a Trusted Third Party

We first present a simple system that allows
two parties A and B to determine the cosine sim-
ilarity of their word embedding through the help
of an honest third party. The protocol is as follows:

• A and B share a secret key vector sk with
each other via some key-sharing algorithm, e.g.
Regev’s public key encryption scheme.

• A and B both encrypt their texts using sk and
send their encrypted texts to a trusted third party
C. Note, A and B must send C their cipher-
text messages ctA = Enc(sk, ptA) and ctB =
Enc(sk, ptB) through an additional secure layer
(e.g. using TLS) to protect against man-in-the-
middle attacks from one another.

• A and B also send C an encryp-
tion of the bits of their secret key,
ek = (Enc(sk, sk1), . . . ,Enc(sk, skn)). This
encryption key ek will be used by C for boot-
strapping the FHE circuit. C only really needs
one of the parties to send ek, so it can arbitrarily
decide which one to use and which one to
discard.

• C uses an FHE circuit to compute the (encrypted)
word embeddings of A and B’s ciphertexts and
then their cosine similarity. C then send A
and B the output of this computation, which
should be the encrypted cosine similarity ctC =
Enc(sk, cos(θ)).

• A and B decrypt C’s output to determine the
cosine similarity cos(θ) = Dec(sk, ctC). Thus,
they are both able to recover the cosine similar-
ity of their ciphertexts without revealing the other
party’s plaintext.

Unfortunately, this system relies on the assumption
that C is honest. A dishonest party C could simply,
send A’s ciphertext ctA to B who can decrypt it and
learn the plaintext.

5.2. A Low Trust Two Party System

We also propose a more complicated system
that eliminates the need for a trusted third party.

• A generates a secret key vector sk which is not
shared with anyone else.

• A encrypts their text into ciphertext ctA =
Enc(sk, ptA) and sends it to B. A also sends an
encryption of the bits of their secret key, ekA =
(Enc(sk, sk1), . . . ,Enc(sk, skn)). This encryp-
tion key ek will be used by C for bootstrapping
the FHE circuit.

• B precomputes the embedding of their plaintext
emB = Emb(ptB).

• B generates a secret key skB = (a, b) for a, b ∈
Zp, which will be used by B to generate a one-
time message authentication code (MAC).

• B sets up an FHE circuit that does the following:

4

– Computes the embedding of A’s text
emA = Emb(ptA).

– Computes the cosine similarity between
emA and emB . Note that the embedding of
B’s text is hard coded into the circuit, and it
is precomputed by B before compiling the
circuit.

– Signs the cosine similarity value by ap-
pending a MAC. We will do this with
a simple one-time MAC scheme where
MAC(skB,m) = am+ b (mod p). This is
done as described in past lecture notes from
this class [8].

– Outputs the results, which are the en-
crypted values Enc(sk, cos(θ)) and
Enc(sk,MAC(skB, cos(θ))) respectively.

• B send the results of the FHE computation to A,
where A will decrypt them and obtain cos(θ) and
MAC(skB, cos(θ)).

• A sends the decrypted result cos(θ) and
MAC(skB, cos(θ)) to B, and B can confirm that
this is in fact the cosine similarity it calculated by
verifying the MAC.

This system allows for semantic agreement with
much less trust involved. However, it comes at the cost
of additional complexity in the FHE circuit due to the
signing computation.

6. Security Evaluations

6.1. Threat Model

Under a fairly loose set of assumptions, our systems
from Section 5 succeed at providing secure multi-party
semantic agreement. Namely:

• The third-party computation entity is to be trusted
and will not, for instance, simply send party B’s
encrypted ciphertext to party A (who would then
be able to decrypt it).

• Both parties A and B are incentive-aligned in
their goal of obtaining a true semantic agreement
measure. Therefore, neither A nor B will be dis-
honest and, for example, send an encryption of

intentionally bad text to alter the output. This as-
sumption should follow from Condition 3 as dis-
cussed in the Motivation section.

• All parties can be considered curious. That is, our
system must protect against parties snooping on
communications and intentionally trying to deter-
mine the secret texts.

Moreover, the hypothetical system proposed in 5.2
eliminates the need for a third party and provides a
fairly strong notion of security without the need for
the first assumption.

6.2. Analysis of Possible Attacks

We note the existence of a coordinated attack by
which a group of parties A1, A2, · · · , An may each
query their degree of semantic agreement with the
same counterparty B, each thereby obtaining a linear
equation on the embedding of party B from the re-
ceived vector dot product. As n becomes larger than
the dimension of the word embeddings, it becomes
possible for the group A1, · · · , An to pool their infor-
mation to deduce B’s true word embedding, which is
definitely undesirable.

However, this is not truly that problematic for sev-
eral reasons:

• Counterparty B has control over the rate at which
semantic agreement queries are processed, and
can simply refuse to answer more than m << n
queries.

• We could easily restructure our system to output
a binary yes/no with some threshold for similar-
ity instead of the exact cosine similarity, which
would make it much more difficult for the afore-
mentioned attack to succeed without sacrificing
too much functionality.

• The party evaluating the FHE computation could
intentionally add some small randomized error to
the cosine similarity value. This would lead to
the attacking parties trying to solve a system of
equations that looks like

Ab⃗+ e⃗ = s⃗

where A is a matrix consisting of the normalized
embeddings of A1, . . . , An plaintexts’ in each

5

row, b⃗ is Party B’s normalized embedding, e⃗ are
the n randomized errors, and s⃗ are the returned
cosine similarities. Note that, with valid parame-
ters, the LWE assumption should protect B from
having their embedding leaked.

• Depending on the word embedding used, it
may still be very difficult for the group
A1, A2, · · · , An to deduce B’s exact plaintext.
This is especially true if the context length of the
embedding is large. Let V be the vocabulary size,
C be the context length (i.e. how many tokens are
allowed to be embedded), and N the number of
dimensions in the embedding. The embedding is
then a function:

Emb : V C → RN

Given parameters can easily be on the order of
N ≈ 1000 and C can essentially be unbounded
(as described in Open AI’s paper on text embed-
dings [6]), it becomes essentially impossible to
determine the exact text that would produce any
given word embedding.

7. Implementation

We fully implemented a system that is capable of
calculating single-word embeddings in FHE. As men-
tioned in Section 4.3, we trained our own n-gram lan-
guage model with a context size of 2 and 100 embed-
ding dimensions following the model architecture out-
lined earlier. The model is implemented in pytorch
below; we remark that the final softmax layer to ex-
tract the final word probabilities is integrated into the
training loop instead.

n-gram Model Implementation
1 class QuantNGramLanguageModeler(nn.Module):
2 def __init__(self, vocab_size, embedding_dim,

context_size):
3 super(QuantNGramLanguageModeler, self).__init__()
4 self.embeddings = qnn.QuantEmbedding(vocab_size,

embedding_dim)
5 self.linear1 = qnn.QuantLinear(context_size *

embedding_dim, 128, bias=True, bias_quant=None)
6 self.linear2 = qnn.QuantLinear(128, vocab_size,

bias=True, bias_quant=None)
7
8 def forward(self, inputs):
9 embeds = self.embeddings(inputs).view((1, -1))

10 out = torch.relu(self.linear1(embeds))
11 out = self.linear2(out)
12 return out

After training the language model above for
several epochs on The Great Gatsby for two

hours, we extracted the word embedding layer
self.embeddings. Even though the word em-
bedding layer was already quantized with the Brevi-
tas quantization library, it’s not possible yet to directly
compile this layer into FHE with Concrete-ML, as it
doesn’t currently support compilation on lookup tables
(which is what an embedding layer is implemented as
under pytorch).

To transform this into an equivalent quantized layer
that can be compiled into FHE, we started by extract-
ing a matrix E of dimensions 100× 7472 (embedding
dimension by vocabulary size), with the ith column
containing the embedding of corresponding word i.

Then, we linearized the computation by expressing
the embedding lookup operation as

Emb(w⃗) = Ew⃗

where w⃗ is a one-hot encoding of the word we are em-
bedding. To compile our circuit, we quantized (with
Brevitas) the matrix multiplication into int16 com-
putations as required by Concrete-ML.

Compiling the Embedding into FHE
1 # Load model and other variables.
2 logger.info("Importing model and other variables...")
3 vocab_size, embedding_dim, context_size =

pickle_from_path("model/params.pkl")
4 model = QuantNGramLanguageModeler(vocab_size, embedding_dim,

context_size)
5 model.load_state_dict(torch.load("model/model.pth"))
6 model.eval()
7 word_to_ix = pickle_from_path("model/word_to_ix.pkl")
8 vocab = pickle_from_path("model/vocab.pkl")
9

10 # Linearize the embedding.
11 logger.info("Linearizing the embedding...")
12 qembedding = qnn.QuantLinear(vocab_size, embedding_dim,

bias=False, bias_quant=None,
input_quant=Int8ActPerTensorFloat)

13 qembedding.weight =
nn.Parameter(model.embeddings.weight.transpose(0, 1))

14
15 # Compile the embedding.
16 logger.info("Compiling the embedding...")
17 input_data = torch.stack([word_to_tensor(word, word_to_ix,

vocab_size) for word in vocab])
18 input_data = np.array(input_data, dtype=float)
19 compiled_embedding = compile_brevitas_qat_model(
20 qembedding,
21 input_data,
22)

In the above, word_to_ix is simply a map-
ping from the vocabulary space to indices, and
word_to_tensor is a function that converts
a word to the corresponding one-hot encoding.
compiled_embedding provides the end product–
a (slightly transformed) embedding layer taking words
to embeddings, compiled with FHE.

Our full implementation can be found in our Github
repository [9].

6

Compilation time of FHE circuit 23.1 s
Avg. time per embedding 0.990 ms

Avg. time per embedding in FHE 2.85 ms
Avg. % error of FHE embeddings 1.45%

Table 1. Performance results

8. Performance

We tested the performance and accuracy of our FHE
word embedding implementation. Remember that due
to the quantization that is required when using the
Concrete-ML library, there will be a slight error when
comparing word embeddings computed in FHE and
those computed in the clear.

All performance results were determined by run-
ning our programs on a full node of the MIT Super-
Cloud system [7]. The node had 48 Intel Xeon Plat-
inum 8260 CPUs and 192 GB of total RAM. We were
able to use these same computing resources for the
training of our n-gram language modeler.

We used a sample of 1000 words to determine the
average performance and error associated with FHE
computations. The percent error of our word embed-
dings was calculated using the expression

% error =
||e⃗FHE − e⃗||

||e⃗||
(†)

where e⃗ is the trained word embedding and e⃗FHE is the
FHE computed word embedding.

Our results are shown in Table 1. In particular,
the requisite quantization procedures only introduced
1.45% error on average to the word embeddings.
Mathematically, this implies a fairly satisfactory upper
bound on the percent error of our cosine similarities as
well, as implied by the following lemma.

Lemma 1. Given two word embeddings e⃗, f⃗ and
their corresponding FHE-computed embeddings
e⃗FHE, f⃗FHE, write χe, χf for the associated errors
as defined in (†). Then, the FHE-computed cosine
similarity

e⃗FHE · f⃗FHE
is within χe+χf +χe ·χf percent error of the true

cosine similarity

e⃗ · f⃗ .

Proof. Without loss of generality scale such that
∥e⃗∥ =

∥∥∥f⃗∥∥∥ = 1.

Note that we have

e⃗ · f⃗ − e⃗FHE · f⃗FHE = e⃗ · (f⃗ − f⃗FHE)+

f⃗ · (e⃗− e⃗FHE)− (e⃗− e⃗FHE)(f⃗ − f⃗FHE),

and so from Triangle Inequality

∣∣∣e⃗ · f⃗ − e⃗FHE · f⃗FHE
∣∣∣ ≤ ∣∣∣e⃗ · (f⃗ − f⃗FHE)

∣∣∣
+
∣∣∣f⃗ · (e⃗− e⃗FHE)

∣∣∣+ ∣∣∣(e⃗− e⃗FHE)(f⃗ − f⃗FHE)
∣∣∣

≤ χe + χf + χe · χf .

Rescaling produces the desired result.

Qualitatively, Lemma 1 implies that if the FHE-
computed embeddings are fairly accurate (as they ap-
pear to be in Table 1), the FHE-computed cosine sim-
ilarities should be accurate to a comparable degree.
Quantitatively, we expect them to be accurate up to an
error of at most 0.0145 + 0.0145 + 0.0145 · 0.0145 =
2.92% on average.

All in all, our FHE implementation suffers from a
factor of 2.85 ms

0.990 ms ≈ 3 multiplicative overhead from
running on slower FHE operations and a ≈ 3% ap-
proximation error incurred from quantization on an av-
erage cosine similarity computation–not a particularly
large price to pay for the security of semantic agree-
ment.

9. Our Attempt at a FHE LLM

At the start of this project, our goals were more am-
bitious: we hoped to fully quantize all the layers of
the GPT-2 model and perform all computations in the
entire model in FHE. However, we ran into multiple
issues. Unlike our existing system, running inference
with the GPT-2 model requires quantization of non-
linear computations such as the softmax layer. This is
currently not implemented in the Concrete-ML library.

7

We briefly tried to implement a softmax layer man-
ually by applying an exponential, summing over the fi-
nal axis, and dividing the resulting matrices. Although
each of these operations is supported by Concrete-ML
individually, they were only supported up to tensors
of dimension at most 3 while the minGPT model we
studied operated on tensors of dimension 4. The au-
thors believe that it should nonetheless be possible to
quantize and compile a large language model such as
minGPT into FHE.

10. Conclusion and Future Work

Our papers present a proof of concept for safe multi-
party semantic agreement schemes. We presented
novel protocols that leverage FHE and the word em-
bedding techniques of NLP to successfully allow mul-
tiple parties to come to a semantic agreement without
exposing confidential text.

Moreover, we trained an n-gram language model to
create our own word embedder. Using the existing
FHE library Concrete-ML, we were able to success-
fully implement a system that computes single-word
embeddings on encrypted words.

Our current system is limited by the constraint that
parties may only measure semantic agreement on sin-
gle words. This is simply a limitation of the language
model we decided to implement. Many text embed-
ding models on the market can work on arbitrarily
large texts. Nevertheless, our semantic agreement pro-
tocol stands as a compelling proof-of-concept—it ex-
tends easily to operate on embeddings of text with ar-
bitrary length—showing the potential for implementa-
tion of more powerful agreement schemes using FHE.

We hope in the future to be able to fully imple-
ment our proposed scheme in software. While we were
successful in evaluating FHE embeddings, our current
system does not perform the extra step of determining
cosine similarities.

11. Contributions

Miguel was responsible for the original idea of FHE
LLMs which later became this project. He also im-
plemented the FHE word embeddings in software and
evaluated their performance. Finally, he developed the
two-party semantic agreement protocol in Section 5.2.

David analyzed various codebases to assess their vi-
ability for integration with FHE, found the initial base-

line codebases for the existing language models that
could be converted to FHE, and implemented a major-
ity of the (ultimately unsuccessful) quantization of the
softmax layer.

Maria helped motivate the system discussed in 5.2
and helped find security issues in the systems the au-
thors discussed (e.g. the need for a MAC in 5.2 & vul-
nerabilities when repeating the scheme many times).
She also analyzed the zama.ai codebase to ascertain
how linear & nonlinear operations were implemented.

Edward assisted in efforts to quantize minGPT,
helping the authors ultimately succeed at quantizing
the entire multi-head attention module apart from the
softmax layer. He was also involved in discussions
about security evaluations of the three-party semantic
agreement protocol in section 5.1 which ultimately led
to the theoretical two-party agreement system.

References
[1] Ayoub Benaissa. Concrete — zama’s fully homo-

morphic encryption compiler. https://www.
zama . ai / post / zama - concrete - fully -
homomorphic-encryption-compiler, 2023.
2

[2] Jordan Frery. Towards encrypted large language mod-
els with fhe. https://huggingface.co/blog/
encrypted-llm, 2023. 2

[3] Craig Gentry. Fully homomorphic encryption using
ideal lattices, 2009. 2

[4] Kai Kugler, Simon Münker, Johannes Höhmann, and
Achim Rettinger. Invbert: Reconstructing text from
contextualized word embeddings by inverting the bert
pipeline. arxiv, 2022. 3

[5] Haoran Li, Mingshi Xu, and Yangqiu Song. Sentence
embedding leaks more information than you expect:
Generative embedding inversion attack to recover the
whole sentence. ACL Anthology, 2023. 3

[6] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford,
Jesse Michael Han, Jerry Tworek, Qiming Yuan, Niko-
las Tezak, Jong Wook Kim, Chris Hallacy, Johannes
Heidecke, Pranav Shyam, Boris Power, Tyna Eloun-
dou Nekoul, Girish Sastry, Gretchen Krueger, David
Schnurr, Felipe Petroski Such, Kenny Hsu, Madeleine
Thompson, Tabarak Khan, Toki Sherbakov, Joanne
Jang, Peter Welinder, and Lilian Weng. Text and
code embeddings by contrastive pre-training. CoRR,
abs/2201.10005, 2022. 6

[7] Albert Reuther, Jeremy Kepner, Chansup Byun, Sid-
dharth Samsi, William Arcand, David Bestor, Bill
Bergeron, Vijay Gadepally, Michael Houle, Matthew

8

https://www.zama.ai/post/zama-concrete-fully-homomorphic-encryption-compiler
https://www.zama.ai/post/zama-concrete-fully-homomorphic-encryption-compiler
https://www.zama.ai/post/zama-concrete-fully-homomorphic-encryption-compiler
https://huggingface.co/blog/encrypted-llm
https://huggingface.co/blog/encrypted-llm

Hubbell, Michael Jones, Anna Klein, Lauren Milechin,
Julia Mullen, Andrew Prout, Antonio Rosa, Charles
Yee, and Peter Michaleas. Interactive supercomputing
on 40,000 cores for machine learning and data analysis.
In 2018 IEEE High Performance extreme Computing
Conference (HPEC), pages 1–6. IEEE, 2018. 7

[8] Ron Rivest. 6.857 lecture 3: Unconditionally
secure authentication. https : / / web . mit .
edu/6.857/OldStuff/Fall97/lectures/
lecture3.pdf, 1997. 5

[9] Miguel Tulla Lizardi, Edward Wan, Maria Chrysafis,
and David Hu. 6.5610 Final Project. https://
github.com/mtulla/65610_project. 6

9

https://web.mit.edu/6.857/OldStuff/Fall97/lectures/lecture3.pdf
https://web.mit.edu/6.857/OldStuff/Fall97/lectures/lecture3.pdf
https://web.mit.edu/6.857/OldStuff/Fall97/lectures/lecture3.pdf
https://github.com/mtulla/65610_project
https://github.com/mtulla/65610_project

	. Abstract
	. Motivation
	. Background on Fully Homomorphic Encryption
	. FHE Schemes with Arbitrary Operations
	. Concrete ML
	. FHE LLMs

	. Background on Language Model Construction
	. n-gram Model
	. Word Embeddings
	. Training

	. Semantic Agreement Protocols
	. A Simple System with a Trusted Third Party
	. A Low Trust Two Party System

	. Security Evaluations
	. Threat Model
	. Analysis of Possible Attacks

	. Implementation
	. Performance
	. Our Attempt at a FHE LLM
	. Conclusion and Future Work
	. Contributions

