
Applied Cryptography and Security March 8, 2024
Massachusetts Institute of Technology 6.5610 Spring 2024
Recitation 5

Recitation 5: Fully Homomorphic Encryption and
Complexity Review

1 Fully Homomorphic Encryption

This section is largely a repeat of the lecture notes.

Definition 1 We define an FHE scheme with respect to a class of function circuits C to be the four
randomized polynomial time algorithms (Gen,Enc,Dec,Eval) with security parameter n ∈ N.

• Gen(1n) → (sk, ek)

– outputs a secret decryption secret key sk and a public evaluation key ek

• Enc(sk, µ) → ct

• Dec(sk, ct) → µ

• Eval(ek, F, ct1, . . . , ctℓ) → c̃t

– F : Zℓ
2 → Z2 is a member of our circuit class C that takes ℓ inputs, which are

ct1, . . . , ctℓ.

– c̃t is an encryption of F evaluated on each (encrypted) input bit.

In the above definition, note that only the user can encrypt and decrypt (they require
sk)), but anyone can perform Eval. C is the class of circuits that we can homomorphi-
cally evaluate. In the Gentry-Sahai-Waters scheme we built in lecture, C is the class of
Boolean circuits. We can represent any of these functions as layers of Boolean addi-
tion/multiplication gates. We wanted our FHE scheme to satisfy (1) Enc/Dec correctness,
(2) semantic security, (3) compactness, (4) homomorphic addition, and (5) homomorphic
multiplication. See the lecture notes for the formal definitions.

2 Complexity Review

Intuitively, a language or decision problem is a set of rules for which we either answer YES
or NO on each input.

• e.g. Subset sum: Given a set S of positive integers and target value t, is there a
subset A ⊆ S such that

∑
a∈A a = t. Informally, the input space here is the pairs of

(set of integers, integer).



2 Recitation 5

• e.g. Halting problem: Given a program and its input, if we run the program on the
input, will it halt?

We say a program A decides a language L if for all x ∈ X the input space, A(x) = 1 if x ∈ L
and A(x) = 0 if x ̸∈ L.

2.1 Complexity classes

In lecture, the classes P , NP , IP , and PSPACE were relevant to zero-knowledge proofs.
A complexity class is a set of decision problems, and the relationships between classes
describe the “hardness” of problems.

• P: The set of languages which are decidable in polynomial time. That is, all lan-
guages L such that there exists a program which decides whether x ∈ L in poly(n)
time, where x ∈ {0, 1}n.

• NP: The set of languages which are verifiable in polynomial time.

– There exists a polynomial time algorithm called a verifier V, such that if x ∈ L,
V (x,w) = 1 for some w and if x ̸∈ L, V (x,w) = 0 for all w.

– w is called a witness and can be thought of as a “proof” that x is in L.

– e.g., in the subset sum problem, w would be a subset A such that its elements
sum to t

• IP: A language L ∈ IP if there is some pair of algorithms (P, V (r)) with the following
property that decide L. For all candidates x ∈ X ,

– V is poly-time having randomness r and P may be all-powerful.

– P and V may exchange messages m1, . . . ,mk for which each mi may depend
on the previous interaction V (x,m1, . . . ,mk).

– (Completeness) For all x ∈ L,

Pr[(P, V (r))(x) = 1] ≥ 2/3

– (Soundness) For all x ̸∈ L and cheating provers P ∗,

Pr[(P ∗, V (r))(x) = 1] ≤ 1/3

Here, a “cheating prover” just means a malicious prover who will try to con-
vince the verifier that x ∈ L. P ∗ may be all-powerful as well.

• PSPACE: The set of languages which are decidable in polynomial space. That is,
all languages L such that there exists a program which decides whether x ∈ L in
poly(n) memory, where x ∈ {0, 1}n. Note that programs for deciding languages in
PSPACE can use exponential time!



Recitation 5 3

Relationships between these classes will be written on the board.

Theorem 1 (Shamir ’90) IP = PSPACE

This theorem is super cool because it tells us that interactive proofs may be more powerful
than classical proofs. We know NP ⊆ PSPACE, and if NP ⊂ PSPACE=IP, then interactive
proofs can decide a much larger class of languages than classical written proofs (which
can prove NP).

2.2 Reductions and NP-Completeness

We use reductions to prove the relative hardness of problems in NP.

• Intuitively, we say that a language A reduces to a language B (denoted A ≤ B) if
we can utilize a program which decides B to decide A.

• Formally, a polynomial-time Karp reduction R is a polynomial time algorithm which
takes a candidate xA for A and produces R(xA) = xB which is a candidate for lan-
guage B. xA ∈ A =⇒ R(xA) ∈ B and xA ̸∈ A =⇒ R(xA) ̸∈ B

We say a problem L is NP-hard if for all A ∈ NP, A ≤ L. We can think of L as being
“as hard as” any problem in NP. We say L is NP-complete if L ∈ NP and L is NP-hard.
NP-complete problems can be thought of as the hardest problems in NP.

3 ZKP

Definition 2 (Zero knowledge proof) An interactive protocol (P, V ) is a zero-knowledge
proof system for a language L if it is

1. Complete (as defined for IP)

2. Sound (as defined for IP)

3. Zero-knowledge. For every polynomial time V ∗ (which may be malicious), there exists an
expected polynomial time simulator Sim such that for every x ∈ L: Sim and ViewV ∗(P, V ∗)
are computationally indistinguishable.

That is, the verifier’s view, or what it “knows,” during the interaction can be simulated by itself
in probabilistic poly time. This is how we define the notion of the verifier “learning nothing” from
the interaction.

Theorem 2 (Goldreich-Micali-Wigderson ’87) Assuming one-way functions exist, all lan-
guages in NP have computational ZKPs.

In lecture, we constructed a zero-knowledge proof for 3COL, which turns out to be an
NP-complete problem. Therefore, there is a reduction from any A ∈ NP to 3COL. So, in-



4 Recitation 5

formally, for any A ∈ NP, we can construct a ZKP for A by computing the polynomial-time
reduction from A to 3COL and performing the ZKP for the equivalent 3COL instance.

References to be added shortly.


