6.5610 Recitation 1: Review

Katherine Zhao

February 9, 2024

Outline

- Hashing (OWF, Collision Resistance)
- AES
- Linear Algebra Review

Hashing

Hash Functions

A Hash Function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{\lambda}$ maps strings from arbitrary length to strings of length λ

Useful properties for hash functions: collision resistance and one-wayness.

Applications for Hash Functions

Password Storage: Suppose a server wants to store the passwords of its users. However, we don't want to store the passwords directly.

Applications for Hash Functions

Password Storage: Suppose a server wants to store the passwords of its users. However, we don't want to store the passwords directly.

- Store $H(p w)$ instead

Applications for Hash Functions

Password Storage: Suppose a server wants to store the passwords of its users. However, we don't want to store the passwords directly.

- Store $H(p w)$ instead
- When a user logs in, checks that the hash of the input matches the stored hash value.

Applications for Hash Functions

Password Storage: Suppose a server wants to store the passwords of its users. However, we don't want to store the passwords directly.

- Store $H(p w)$ instead
- When a user logs in, checks that the hash of the input matches the stored hash value.
- Even if an adversary gets the stored hash values, we don't want them to discover the passwords of the users: Use one-way functions!

One-way Functions

Intuition

A polynomial time function H is said to be one-way if given $H(x)$ it is difficult to find x^{\prime} such that $H(x)=H\left(x^{\prime}\right)$.

One-way Functions

Intuition

A polynomial time function H is said to be one-way if given $H(x)$ it is difficult to find x^{\prime} such that $H(x)=H\left(x^{\prime}\right)$.

Formal Definition

A polynomial time function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a one-way function (OWF) if for any probabilistic polynomial-time adversary A there exists a negligible function μ such that for every security parameter $\lambda \in \mathbb{N}$,

$$
\operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right): \begin{array}{c}
x \leftarrow^{\mathrm{R}}\{0,1\}^{\lambda} \\
x^{\prime} \leftarrow A(H(x))
\end{array}\right] \leq \mu(\lambda)
$$

One-way Functions

Formal Definition

A polynomial time function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a one-way function (OWF) if for any probabilistic polynomial-time adversary A there exists a negligible function μ such that for every security parameter $\lambda \in \mathbb{N}$,

$$
\operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right): \begin{array}{c}
x \leftarrow^{\mathrm{R}}\{0,1\}^{\lambda} \\
x^{\prime} \leftarrow A(H(x))
\end{array}\right] \leq \mu(\lambda) .
$$

- λ is called the security parameter. The adversary and the function runs polynomial time in λ

One-way Functions

Formal Definition

A polynomial time function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a one-way function (OWF) if for any probabilistic polynomial-time adversary A there exists a negligible function μ such that for every security parameter $\lambda \in \mathbb{N}$,

$$
\operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right): \begin{array}{c}
x<^{\mathrm{R}}\{0,1\}^{\lambda} \\
x^{\prime} \leftarrow A(H(x))
\end{array}\right] \leq \mu(\lambda)
$$

- λ is called the security parameter. The adversary and the function runs polynomial time in λ
- μ is a negligible function: for every polynomial p, there exists λ_{0} such that for every $\lambda>\lambda_{0}, \mu(\lambda)<\frac{1}{p(\lambda)}$

One-way Functions

Formal Definition

A polynomial time function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a one-way function (OWF) if for any probabilistic polynomial-time adversary A there exists a negligible function μ such that for every security parameter $\lambda \in \mathbb{N}$,

$$
\operatorname{Pr}\left[H(x)=H\left(x^{\prime}\right): \begin{array}{c}
x \leftarrow^{\mathrm{R}}\{0,1\}^{\lambda} \\
x^{\prime} \leftarrow A(H(x))
\end{array}\right] \leq \mu(\lambda) .
$$

- λ is called the security parameter. The adversary and the function runs polynomial time in λ
- μ is a negligible function: for every polynomial p, there exists λ_{0} such that for every $\lambda>\lambda_{0}, \mu(\lambda)<\frac{1}{p(\lambda)}$
- In practice, negligible is considered less than a very small constant, like 2^{-128}

Applications for Hash Functions

Authenticating Files: suppose a user wants to store a large file F on an untrusted server. We want to make sure that the server does not tamper with the file.

Applications for Hash Functions

Authenticating Files: suppose a user wants to store a large file F on an untrusted server. We want to make sure that the server does not tamper with the file.

- User stores a succinct hash $H(F)$ locally

Applications for Hash Functions

Authenticating Files: suppose a user wants to store a large file F on an untrusted server. We want to make sure that the server does not tamper with the file.

- User stores a succinct hash $H(F)$ locally
- When the user wants to use the file, it will fetch it from the server and receive F^{\prime}

Applications for Hash Functions

Authenticating Files: suppose a user wants to store a large file F on an untrusted server. We want to make sure that the server does not tamper with the file.

- User stores a succinct hash $H(F)$ locally
- When the user wants to use the file, it will fetch it from the server and receive F^{\prime}
- User can ensure integrity by checking if $H(F)=H\left(F^{\prime}\right)$: Need collision resistance!

Collision Resistance

Intuition

A hash function H is said to be collision resistant if it is hard to find x, x^{\prime} such that $x \neq x^{\prime}$ and $H(x)=H\left(x^{\prime}\right)$

Collision Resistance

Intuition

A hash function H is said to be collision resistant if it is hard to find x, x^{\prime} such that $x \neq x^{\prime}$ and $H(x)=H\left(x^{\prime}\right)$

Formal Definition

A family of functions $\left\{H_{\lambda}\right\}_{\lambda \in \mathbb{N}}$ where $H_{\lambda}:\{0,1\}^{*} \rightarrow\{0,1\}^{\lambda}$ is said to be collision resistant if for all polynomial-time adversaries A there exists a negligible function μ such that for every $\lambda \in \mathbb{N}$,

$$
\operatorname{Pr}\left[H_{\lambda}(x)=H_{\lambda}\left(x^{\prime}\right) \wedge x \neq x^{\prime}:\left(x, x^{\prime}\right) \leftarrow A\left(1^{\lambda}\right)\right] \leq \mu(\lambda)
$$

Sample Problems

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\lambda}$ be a OWF. Define $g:\{0,1\}^{n+1} \rightarrow\{0,1\}^{\lambda}$ to be $g(x)=f(x[0: n])$. Is g a OWF?

Sample Problems

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\lambda}$ be a OWF. Define $g:\{0,1\}^{n+1} \rightarrow\{0,1\}^{\lambda}$ to be $g(x)=f(x[0: n])$. Is g a OWF?
Solution: This is a OWF. Suppose for contradiction that a PPT adversary could invert $y=g(x)$ with non-negligible probability and obtain x^{\prime} such that $g\left(x^{\prime}\right)=y$. Then, the adversary would be able to invert f by simply taking $x^{\prime}[0: n-1]$. This contradicts the fact that f is a OWF.

Sample Problems

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\lambda}$ be a OWF. Let $g:\{0,1\}^{2 n} \rightarrow\{0,1\}^{\lambda}$ where $g\left(x_{1} \| x_{2}\right)=f\left(x_{1}\right) \oplus x_{2}$. Does this imply that g is a OWF?

Sample Problems

Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{\lambda}$ be a OWF. Let $g:\{0,1\}^{2 n} \rightarrow\{0,1\}^{\lambda}$ where $g\left(x_{1} \| x_{2}\right)=f\left(x_{1}\right) \oplus x_{2}$. Does this imply that g is a OWF?
Solution: No. Suppose we are given $y=g\left(x_{1} \| x_{2}\right)$. Then, let us choose a random x_{1}^{\prime} and compute $f\left(x_{1}^{\prime}\right)$. Then, let us choose $x_{2}^{\prime}=y \oplus f\left(x_{1}^{\prime}\right)$. We get that $g\left(x_{1}^{\prime} \| x_{2}^{\prime}\right)=f\left(x_{1}^{\prime}\right) \oplus y \oplus f\left(x_{1}^{\prime}\right)=y$.

Sample Problems

Suppose that $h_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{d}$ is a collision resistant hash function. Does it imply that $h_{2}:\{0,1\}^{n-d} \times\{0,1\}^{n} \rightarrow\{0,1\}^{d}$ is also collision resistant, where $h_{2}(x, y)=h_{1}\left(x \| h_{1}(y)\right)$?

Sample Problems

Suppose that $h_{1}:\{0,1\}^{n} \rightarrow\{0,1\}^{d}$ is a collision resistant hash function. Does it imply that $h_{2}:\{0,1\}^{n-d} \times\{0,1\}^{n} \rightarrow\{0,1\}^{d}$ is also collision resistant, where $h_{2}(x, y)=h_{1}\left(x \| h_{1}(y)\right)$?
Solution: Yes. Suppose h_{2} is not collision resistant, so we are able to find $x, y, x^{\prime}, y^{\prime}$ such that $(x, y) \neq\left(x^{\prime}, y^{\prime}\right)$ and $h_{2}(x, y)=h_{2}\left(x^{\prime}, y^{\prime}\right)$. Therefore, either it is the case that $x\left\|h_{1}(y)=x^{\prime}\right\| h_{1}\left(y^{\prime}\right)$ or $x\left\|h_{1}(y) \neq x^{\prime}\right\| h_{1}\left(y^{\prime}\right)$. In the first case, that implies that $h_{1}(y) \neq h_{1}\left(y^{\prime}\right)$, so we have found a collision for h_{1}. In the second case, $x \| h_{1}(y)$ and $x^{\prime} \| h_{1}\left(y^{\prime}\right)$ cause a collision.

AES

AES is a pseudorandom permutation.

Pseudorandom Function

A function $f: K \times\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$ is said to be a pseudorandom function (PRF) if a probabilistic polynomial time adversary A cannot distinguish between given oracle access to $f(k, \cdot)$ for random $k \leftarrow K$ and oracle access to a truly random function $U:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$:
For all ppt adversaries A, there exists negligible μ such that

$$
\left|\operatorname{Pr}\left[A^{f(k, \cdot)}\left(1^{\lambda}\right)=1: k \leftarrow^{\mathbb{R}} K\right]-\operatorname{Pr}\left[A^{U}\left(1^{\lambda}\right)=1: U \mathbb{R}^{\mathbb{R}} \operatorname{Fun}_{\lambda \rightarrow \lambda}\right]\right| \leq \mu(\lambda) .
$$

AES

Pseudorandom Permutation

A function $f: K \times\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$ is said to be a pseudorandom permutation (PRP) if a probabilistic polynomial time adversary A cannot distinguish between given oracle access to $f(k, \cdot)$ for random $k \leftarrow K$ and oracle access to a truly random permutation $U:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$, AND f maps distinct inputs to distinct outputs and there exists an efficient inversion algorithm $f^{-1}(k, \cdot)$.

AES

Pseudorandom Permutation

A function $f: K \times\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$ is said to be a pseudorandom permutation (PRP) if a probabilistic polynomial time adversary A cannot distinguish between given oracle access to $f(k, \cdot)$ for random $k \leftarrow K$ and oracle access to a truly random permutation $U:\{0,1\}^{\lambda} \rightarrow\{0,1\}^{\lambda}$, AND f maps distinct inputs to distinct outputs and there exists an efficient inversion algorithm $f^{-1}(k, \cdot)$.

PRP/PRF Switching Lemma

If the adversary queries for T input/output pairs, then the probability that it can distinguish between a PRP and a PRF is at most $\frac{T(T-1)}{2^{\lambda+1}}$

AES

$\operatorname{AES}(k, x)$:

k_{0}, \ldots, k_{10} are derived from the key k through an invertible algorithm. π is an invertible function consisting of 3 steps: substitute bytes, shift rows, and mix columns (no mix columns in the last round)

AES Steps

AES treats its inputs as a matrix of bytes.

AES Steps

AES treats its inputs as a matrix of bytes.
Substitute bytes: Replaces bytes in the matrix according to a map called the sbox. This adds nonlinearity to the algorithm (the other two steps are linear).
right (low-order) nibble

	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	52	09	6a	d5	30	36	a5	38	bf	40	a3	9 e	81	£3	d7	fb
1	7c	e3	39	82	9b	$2 f$	ff	87	34	8 e	43	44	c4	de	e9	cb
2	54	7b	94	32	a6	c2	23	3d	ee	4c	95	Ob	42	fa	c3	4 e
3	08	2 e	a1	66	28	d9	24	b2	76	5b	a2	49	6d	8b	d1	25
4	72	18	f6	64	86	68	98	16	d4	a4	5c	cc	5d	65	b6	92
5	6 c	70	48	50	fd	ed	b9	da	$5 e$	15	46	57	a7	8d	9d	84
6	90	d8	ab	00	8 c	bc	d3	0a	¢7	e4	58	05	b8	b3	45	06
7	do	2 c	1 e	$8 \pm$	ca	$3 f$	$0 ¢$	02	c1	af	bd	03	01	13	8a	6b
8	3a	91	11	41	4 E	67	do	ea	97	f2	of	ce	f0	b4	e6	73
9	96	ac	74	22	e7	ad	35	85	e2	£9	37	e8	1c	75	df	6e
a	47	£1	1a	71	1d	29	c5	89	$6 \pm$	b7	62	0 e	aa	18	be	1b
b	fc	56	3e	4b	c6	d2	79	20	9a	db	co	fe	78	cd	5a	£4
c	1 f	dd	a8	33	88	07	c7	31	b1	12	10	59	27	80	ec	$5 f$
d	60	51	7 f	a9	19	b5	4 a	0d	2d	e5	7 a	$9 f$	93	c9	9c	ef
e	a0	e0	3b	4d	ae	2a	f5	b0	c8	eb	bb	3c	83	53	99	61
f	17	2b	04	7 e	ba	77	d6	26	e1	69	14	63	55	21	0 C	7d

AES Steps

Shift rows: Cyclically shifts the bytes in each row by a certain offset. The first row is left unchanged, the second row is shifted one to the left, the third row is shifted two, and the fourth row is shifted three.

$\begin{gathered} \text { No } \\ \text { change } \end{gathered}$	$a_{0,0}$	$a_{0,1}$	$\mathrm{a}_{0,2}$	$\mathrm{a}_{0,3}$
Shift 1	$\mathrm{a}_{1,0}$	$\mathrm{a}_{1,1}$	$\mathrm{a}_{1,2}$	$\mathrm{a}_{1,3}$
Shijt 2	$a_{2,0}$	$\mathrm{a}_{2,1}$	${ }^{\text {a,2 }}$	$a_{2,3}$
Shift 3	$a_{3,0}$	$a_{3,1}$	$a_{3,2}$	$a_{3,3}$

$a_{0,0}$	$a_{0,1}$	$a_{0,2}$	$a_{0,3}$
$a_{1,1}$	$a_{1,2}$	$a_{1,3}$	$a_{1,0}$
$a_{2,2}$	$a_{2,3}$	$a_{2,0}$	$a_{2,1}$
$a_{3,3}$	$a_{3,0}$	$a_{3,1}$	$a_{3,2}$

AES Steps

Mix columns: Each column is multiplied with a specific matrix

Linear Algebra Review: Solving $\mathbf{A x}=\mathbf{b}$

Linear Algebra Review: Solving $\mathbf{A x}=\mathbf{b}$

We can solve $A \mathbf{x}=\mathbf{b}$ by using Gaussian elimination to put the matrix in row echelon form.

$$
\left[\begin{array}{rrrrr}
1 & 2 & 2 & 2 & b_{1} \\
2 & 4 & 6 & 8 & b_{2} \\
3 & 6 & 8 & 10 & b_{3}
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lllll}
1 & 2 & 2 & 2 & b_{1} \\
0 & 0 & 2 & 4 & b_{2}-2 b_{1} \\
0 & 0 & 0 & 0 & b_{3}-b_{2}-b_{1}
\end{array}\right]
$$

Linear Algebra Review: Solving $\mathbf{A x}=\mathbf{b}$

We can solve $A \mathbf{x}=\mathbf{b}$ by using Gaussian elimination to put the matrix in row echelon form.
$\left[\begin{array}{rrrrr}1 & 2 & 2 & 2 & b_{1} \\ 2 & 4 & 6 & 8 & b_{2} \\ 3 & 6 & 8 & 10 & b_{3}\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lllll}1 & 2 & 2 & 2 & b_{1} \\ 0 & 0 & 2 & 4 & b_{2}-2 b_{1} \\ 0 & 0 & 0 & 0 & b_{3}-b_{2}-b_{1}\end{array}\right]$

- We can then get a particular solution using back-substitution, setting all free variables to 0 : Let $\mathbf{b}=(1,5,6)$, then $\mathbf{x}_{p}=(-2,0,3 / 2,0)$

Linear Algebra Review: Solving $\mathbf{A x}=\mathbf{b}$

We can solve $A \mathbf{x}=\mathbf{b}$ by using Gaussian elimination to put the matrix in row echelon form.

$$
\left[\begin{array}{rrrrr}
1 & 2 & 2 & 2 & b_{1} \\
2 & 4 & 6 & 8 & b_{2} \\
3 & 6 & 8 & 10 & b_{3}
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{lllll}
1 & 2 & 2 & 2 & b_{1} \\
0 & 0 & 2 & 4 & b_{2}-2 b_{1} \\
0 & 0 & 0 & 0 & b_{3}-b_{2}-b_{1}
\end{array}\right]
$$

- We can then get a particular solution using back-substitution, setting all free variables to 0 : Let $\mathbf{b}=(1,5,6)$, then $\mathbf{x}_{p}=(-2,0,3 / 2,0)$
- To get the complete solution, we add the nullspace (solutions to $A \mathbf{x}=\mathbf{0}): \mathbf{x}=(-2,0,3 / 2,0)+c_{1}(-2,1,0,0)+c_{2}(2,0,-2,1)$

Linear Algebra Review: Solving $A x=b$

How many solutions are there?

Linear Algebra Review: Solving $A x=b$

How many solutions are there?

Definition

Rank: The rank of a matrix is dimension of the vector space spanned by its columns.

Linear Algebra Review: Solving $A x=b$

How many solutions are there?

Definition

Rank: The rank of a matrix is dimension of the vector space spanned by its columns.

Given a $m \times n$ matrix A, we have the following cases (where R is the reduced row echelon form of A)

	$r=m=n$	$r=n<m$	$r=m<n$	$r<m, r<n$
R	I	$\left[\begin{array}{l}I \\ 0\end{array}\right]$	$\left[\begin{array}{ll}I & F\end{array}\right]$	$\left[\begin{array}{ll}I & F \\ 0 & 0\end{array}\right]$
\# solutions to $A \boldsymbol{x}=\mathrm{b}$	1	0 or 1	infinitely many	0 or infinitely many

Questions?

