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Hashing

Hash Functions

A Hash Function H : {0, 1}∗ → {0, 1}λ maps strings from arbitrary
length to strings of length λ

Useful properties for hash functions: collision resistance and one-wayness.
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Applications for Hash Functions

Password Storage: Suppose a server wants to store the passwords of its
users. However, we don’t want to store the passwords directly.

Store H(pw) instead

When a user logs in, checks that the hash of the input matches the
stored hash value.

Even if an adversary gets the stored hash values, we don’t want them
to discover the passwords of the users: Use one-way functions!
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One-way Functions

Intuition

A polynomial time function H is said to be one-way if given H(x) it is
difficult to find x ′ such that H(x) = H(x ′).

Formal Definition

A polynomial time function H : {0, 1}∗ → {0, 1}∗ is a one-way function
(OWF) if for any probabilistic polynomial-time adversary A there exists a
negligible function µ such that for every security parameter λ ∈ N,

Pr

[
H(x) = H(x ′) :

x ←R {0, 1}λ

x ′ ← A(H(x))

]
≤ µ(λ).
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Pr

[
H(x) = H(x ′) :

x ←R {0, 1}λ

x ′ ← A(H(x))

]
≤ µ(λ).

λ is called the security parameter. The adversary and the function
runs polynomial time in λ

µ is a negligible function: for every polynomial p, there exists λ0 such
that for every λ > λ0, µ(λ) <

1
p(λ)

In practice, negligible is considered less than a very small constant,
like 2−128
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Applications for Hash Functions

Authenticating Files: suppose a user wants to store a large file F on an
untrusted server. We want to make sure that the server does not tamper
with the file.

User stores a succinct hash H(F ) locally

When the user wants to use the file, it will fetch it from the server
and receive F ′

User can ensure integrity by checking if H(F ) = H(F ′): Need
collision resistance!
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Collision Resistance

Intuition

A hash function H is said to be collision resistant if it is hard to find x , x ′

such that x ̸= x ′ and H(x) = H(x ′)

Formal Definition

A family of functions {Hλ}λ∈N where Hλ : {0, 1}∗ → {0, 1}λ is said to be
collision resistant if for all polynomial-time adversaries A there exists a
negligible function µ such that for every λ ∈ N,

Pr

[
Hλ(x) = Hλ(x

′) ∧ x ̸= x ′ : (x , x ′)← A(1λ)

]
≤ µ(λ).
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Sample Problems

Let f : {0, 1}n → {0, 1}λ be a OWF. Define g : {0, 1}n+1 → {0, 1}λ to be
g(x) = f (x [0 : n]). Is g a OWF?

Solution: This is a OWF. Suppose for contradiction that a PPT adversary
could invert y = g(x) with non-negligible probability and obtain x ′ such
that g(x ′) = y . Then, the adversary would be able to invert f by simply
taking x ′[0 : n − 1]. This contradicts the fact that f is a OWF.
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Sample Problems

Let f : {0, 1}n → {0, 1}λ be a OWF. Let g : {0, 1}2n → {0, 1}λ where
g(x1||x2) = f (x1)⊕ x2. Does this imply that g is a OWF?

Solution: No. Suppose we are given y = g(x1||x2). Then, let us choose a
random x ′1 and compute f (x ′1). Then, let us choose x ′2 = y ⊕ f (x ′1). We
get that g(x ′1||x ′2) = f (x ′1)⊕ y ⊕ f (x ′1) = y .

Katherine Zhao 6.5610 Recitation 1: Review February 9, 2024 10 / 20



Sample Problems

Let f : {0, 1}n → {0, 1}λ be a OWF. Let g : {0, 1}2n → {0, 1}λ where
g(x1||x2) = f (x1)⊕ x2. Does this imply that g is a OWF?
Solution: No. Suppose we are given y = g(x1||x2). Then, let us choose a
random x ′1 and compute f (x ′1). Then, let us choose x ′2 = y ⊕ f (x ′1). We
get that g(x ′1||x ′2) = f (x ′1)⊕ y ⊕ f (x ′1) = y .

Katherine Zhao 6.5610 Recitation 1: Review February 9, 2024 10 / 20



Sample Problems

Suppose that h1 : {0, 1}n → {0, 1}d is a collision resistant hash function.
Does it imply that h2 : {0, 1}n−d × {0, 1}n → {0, 1}d is also collision
resistant, where h2(x , y) = h1(x ||h1(y))?

Solution: Yes. Suppose h2 is not collision resistant, so we are able to find
x , y , x ′, y ′ such that (x , y) ̸= (x ′, y ′) and h2(x , y) = h2(x

′, y ′). Therefore,
either it is the case that x ||h1(y) = x ′||h1(y ′) or x ||h1(y) ̸= x ′||h1(y ′). In
the first case, that implies that h1(y) ̸= h1(y

′), so we have found a
collision for h1. In the second case, x ||h1(y) and x ′||h1(y ′) cause a
collision.
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AES

AES is a pseudorandom permutation.

Pseudorandom Function

A function f : K × {0, 1}λ → {0, 1}λ is said to be a pseudorandom
function (PRF) if a probabilistic polynomial time adversary A cannot
distinguish between given oracle access to f (k, ·) for random k ← K and
oracle access to a truly random function U : {0, 1}λ → {0, 1}λ:
For all ppt adversaries A, there exists negligible µ such that

|Pr
[
Af (k,·)(1λ) = 1 : k ←R K

]
−Pr

[
AU(1λ) = 1 : U ←R Funλ→λ

]
| ≤ µ(λ).

.
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AES

Pseudorandom Permutation

A function f : K × {0, 1}λ → {0, 1}λ is said to be a pseudorandom
permutation (PRP) if a probabilistic polynomial time adversary A cannot
distinguish between given oracle access to f (k, ·) for random k ← K and
oracle access to a truly random permutation U : {0, 1}λ → {0, 1}λ,
AND f maps distinct inputs to distinct outputs and there exists an
efficient inversion algorithm f −1(k , ·).

PRP/PRF Switching Lemma

If the adversary queries for T input/output pairs, then the probability that

it can distinguish between a PRP and a PRF is at most T (T−1)
2λ+1
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AES

AES(k , x):

k0, ..., k10 are derived from the key k through an invertible algorithm.
π is an invertible function consisting of 3 steps: substitute bytes, shift
rows, and mix columns (no mix columns in the last round)
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AES Steps

AES treats its inputs as a matrix of bytes.

Substitute bytes: Replaces bytes in the matrix according to a map called
the sbox. This adds nonlinearity to the algorithm (the other two steps are
linear).
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AES Steps

Shift rows: Cyclically shifts the bytes in each row by a certain offset. The
first row is left unchanged, the second row is shifted one to the left, the
third row is shifted two, and the fourth row is shifted three.
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AES Steps

Mix columns: Each column is multiplied with a specific matrix
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Linear Algebra Review: Solving Ax = b

We can solve Ax = b by using Gaussian elimination to put the matrix in
row echelon form.

We can then get a particular solution using back-substitution, setting
all free variables to 0: Let b = (1, 5, 6), then xp = (−2, 0, 3/2, 0)
To get the complete solution, we add the nullspace (solutions to
Ax = 0): x = (−2, 0, 3/2, 0) + c1(−2, 1, 0, 0) + c2(2, 0,−2, 1)
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Linear Algebra Review: Solving Ax = b

How many solutions are there?

Definition

Rank: The rank of a matrix is dimension of the vector space spanned by
its columns.

Given a m × n matrix A, we have the following cases (where R is the
reduced row echelon form of A)
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Questions?
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