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Outline

• Linearization (Arora-Ge): An algebraic attack

• BKW: A combinatorial attack

• LLL: A geometric attack
I highly recommend Vinod’s lecture
notes on lattices. The discussion here is
heavily influenced by his notes.

Introduction

Today I will give you a quick and dirty summary of the known clas-
sical attacks on the learning-with-errors problem. We will focus on
algorithms for the “decision” version of the problem, which is the
one that we have discussed up to this point in the class. Some algorithms we will see actually

solve the “search” version of the prob-
lem, in which the attacker must find the
LWE secret. The search and decision
versions of the problem are equally
hard, up to polynomial factors.

The goal of this lecture is just to show you the breadth of ideas
that we use in cryptanalysis—each drawing on a different mathemati-
cal idea. The strange thing about cryptanalysis is that the same ideas
come up all over the place. Each of the three ideas I will present to-
day are also useful for breaking symmetric-key cryptosystems, which
have no apparent connection to LWE. Knowing these handful of tech-
niques is already enough to do lots of damage.

There is no one “best” attack on LWE: which attack works best is a
function of the particular choice of LWE parameters you are using. I
will try to give some intuition as we go for why that is.

The take-home message for you should be that: for a given choice
of the security parameter n (i.e., the dimension of the secret), what
determines the hardness of LWE is the “noise-to-modulus” ratio: Often people call this the “modulus-to-

noise” ratio, which is just the inverse.how large the LWE error is relative to the modulus.

To refresh your memory, the LWE assumption of Regev, loosely
speaking, asserts that it is hard to solve noisy linear equations mod-
ulo integers of a certain type.

https://people.csail.mit.edu/vinodv/CS294/lecturenotes.pdf
https://people.csail.mit.edu/vinodv/CS294/lecturenotes.pdf
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The LWE assumption is a family of assumptions associated with
integral parameters n = n(λ), m = m(λ), q = q(λ) and an error
distribution χ = χ(λ) over Zq.

Definition 1. The LWEn,m,q,χ assumption asserts that

(A, As + e)
c≈ (A, u)

where A←R Zm×n
q , s←R Zn

q , e← χm, and u←R Zm
q .

We will think of the distribution χ as being B-bounded—that is,
its support is over {−B, . . . , B}, with our standard interpretation of
negative numbers in Zq. By default, we will take χ to be the uniform
distribution over {−B, . . . , B}.

Furthermore, we will take q = poly(n). Similar ideas in the more
general case of a super-polynomially large modulus q with more
work.

An algebraic attack on LWE

This attack when the LWE error is sampled from a very narrow
distribution—that is, when B = O(1) or similar. In this case, it can
recover the entire LWE secret in polynomial time, provided that the
number of samples that the attacker has access to is m = nΩ(B).

The attack uses “linearization,” which you saw in one of the
problem sets. This linearization trick is a good one to know, since
it comes up in a few places in cryptanalysis. The basic idea is that
you can (sometimes) solve a system of non-linear equations if you
have enough equations. The idea is to replace each non-linear mono-
mial, such as x2y, with a single new variable z1. Then you can replace
the second non-linear monomial with a second variable z2, and so on,
until you have a linear system in z1, z2, . . . . If you have more inde-
pendent linear equations then variables, you can solve the system.

The trick is showing that (1) you have enough independent linear
equations and (2) that the solution that you get to the linear system is
actually a valid solution to the original system.

As an example of where things can go wrong: If you have

x2y = 12

xy = 6,

you can linearize the system and you will have two equations and
two unknowns. But the resulting trivial equations will not help you
solve the system.
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Attacking LWE using linearization. This attack is due to Arora and
Ge [1].

Say that B = 1, so that the LWE errors are in {−1, 0, 1}. If we have When I say an “LWE sample,” I am
referring to a row of the A matrix
and it’s corresponding entry in the
b = As + e vector.

a noisy LWE sample (a, b) = (a, a⊺s + e) ∈ Zn
q ×Zq, we know that

either:

• b = a⊺s− 1 ⇒ 0 = a⊺s− b− 1,

• b = a⊺s− 0 ⇒ 0 = a⊺s− b, or

• b = a⊺s + 1 ⇒ 0 = a⊺s− b + 1,

where everything is in Zq.
Multiplying these equations together, we get an equation of total

degree three in the elements of the LWE secret s = (s1, . . . , sn) ∈ Zn
q : The total degree is just the maximum,

over all monomials, of the sum of the
exponents of the monomial.0 = (a⊺s− b− 1)(a⊺s− b)(a⊺s− b + 1).

Since a and b are just constants (i.e., known to the attacker), the only
variables here are the sis. This equation has monomials of the form
si, sisj, and sisjsk.

The linearization attack replaces each of these monomials with a
variable zi, and then solve the resulting linear system using Gaus-
sian elimination. Doing so requires at least ≈ n3 equations. It takes
quite a bit of care to argue that the resulting system of equations is
linearly independent (with high probability, over the choice of the A
matrix) and that the solution that Gaussian elimination gives back is
a solution to the original system.

So, if the error is small and the number of samples is large, this
attack is devastating—a polynomial-time secret-recovery attack.

The attack only works if the error is very small. As soon as B =

ω(1), the running time of the attack becomes nω(1), which is super-
polynomial in n. This attack may still be better concretely

than the other attacks we will discuss. It
just no longer runs in polynomial time.

Moreover, if the attacker only gets to see a small number of sam-
ples, the attack does not work either. For example, if the attacker gets
only m = 10n samples and the error is in {−1, 0, 1}, it is not clear
how to make this attack work.

Another surprise is that the same trick does not seem to work if
the LWE secret is small. Even if the LWE secret is very small—0/1, for
example—this small-secret flavor of LWE is roughly as hard as the
standard version. So the hardness of the problem is not symmetric in
the secret and error distribution.

BKW attack

This attack is due to Blum, Kalai, and Wasserman [2]. The BKW
attack requires a large amount of time and samples: roughly 2O(n).
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At the same time, this subexponential running time is much better
than the 2O(n log n) = nO(n) brute-force guess-the-secret attack.

Write the LWE problem instance as a pair (A, b) = (A, As + e).
We are looking for the secret s.

Warm up: If we get lucky. . .

Now, say that we (the attacker) got really lucky and one of the rows
of A had the form (1 0 0 0 · · · 0) ∈ Zn

q . Then I claim that we can get a
noisy version of the first component of the secret.

In particular, we would have an LWE sample of the form

(a, a⊺s + e) = (1 0 0 0 · · · 0)⊺s + e,

which gives us s1 + e ∈ Zq for some error e ←R {−B, . . . , B}, where
s1 ∈ Zq is the first component of the secret.

Having a noisy version of s1 is not good enough: we need s1 itself.
But to do that, we can just hope to get many samples of this form
and then average them.

If we are able to repeat this entire process T times and sum the
results, we will expect the error terms to add up to something like
B
√

T over the integers. The average of these errors values is then I’m being very sloppy here. . .

We need B
√

T ≪ q or else correctness
fails.

B/
√

T. To make this error < 1/2, we just need T = Ω(B2). Once
the error is < 1/2, rounding the average of the samples will give us
back s1. We repeat for all n components of the secret to recover it all
in time roughly nB2 = poly(n), ignoring log n factors.

What’s the catch? Well, the probability that we are so lucky as to
get an LWE sample with the special form (1 0 0 0 · · · 0) is vanishingly
small: roughly 1/qn. So this attack really requires something like qn

samples, which is too many.

Rescuing the idea. At the highest level, the basic idea of the BKW
algorithm is to find ℓ LWE samples that add up to the standard-basis
vector (1 0 0 0 · · · 0). The total error of the summed up samples will
be at most ℓB.

For correctness to hold, we need to make sure that the error ℓB
does not wrap around the modulus q, which requires that ℓB ≪ q, or
ℓ ≪ q/B. Taking the average of poly(ℓ, B) of these samples gives us Here is one place where the modulus-

to-noise ratio shows up.back the first element of the secret. Then we repeat this entire process
n times to recover the entire secret.

The trick then is how you find a small subset of the rows of the A
matrix that sum up to (1 0 · · · 0).

I won’t try to describe the full idea, but I will try to give you a
taste of what is going on.
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Finding weight-two combinations.
For whatever reason, I find it easier
to think of the BKW algorithm in the
language of Wagner’s generalized
birthday problem [3]. A neat property
of the BKW/Wagner algorithm is that
it has many applications to symmetric-
key cryptanalysis as well. Take a look at
Wagner’s paper for details.

Let’s say that we have a large collection of LWE samples and we are
looking for two that sum to the “target” vector (1 0 0 · · · 0). How
hard is this?

This is actually just the birthday problem in disguise: Take two
lists of m LWE samples. Sum up sample i from the left list and sam-
ple j from the right list. What is the probability that they sum to the
target vector?

If you sum up two random vectors in Zn
q , the probability that they

sum to zero is 1/qn. There are m2 pairs of vectors in the two lists, so
heuristically (and we can make this formal), the probability of finding
two that sum to our target vector is

√
qn = qn/2. Using hashing, we

can find this pair in time O(m) = qn/2. This is not a great running
time, but still beats the qn brute-force search.

Finding weight-four combinations

Let’s look at how you can do a little bit better than birthday. In par-
ticular, we will show how to find size-four subsets of the LWE sam-
ples that add up to the target vector. We will do this in time qn/3,
which is again a big improvement over the standard birthday attack’s
qn/2.

The BKW algorithm takes this trick “all the way” to get the full
algorithm.

The birthday algorithm works by finding colliding vectors. Here
we will find partial collisions and then collisions with collisions.

Step 1: Partial collisions In particular, we will start out by looking for
many pairs of vectors whose first n/3 components sum to our target
vector:

(1 0 · · · 0︸ ︷︷ ︸
n/3

∥ random garbage︸ ︷︷ ︸
2n/3

).

How hard is it to find such partial collisions? A pair of random
vectors sums to the target vector with probability q−n/3, so if we
have m vectors, the number of partial-collision pairs we will have is
roughly m2q−n/3.

If we take the list size/sample complexity m = qn/3, then we will
expect to end up with qn/3 partial collisions of this type.

Step 2: Full collisions Given qn/3 partial collisions, we now want
to find complete collisions. What is the probability that two of the
partial-collision vectors sum up to a full collision?
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The probability of a success with any two is q−2n/3. But since we
have m = qn/3 partial collisions, the probability of finding a good
pair is m2q−2n/3, which is some constant.

Moreover, each of the full collisions we have found is just the sum
of four original samples.

The full BKW algorithm finds sums of roughly q/B samples that
match the target vector.

When ℓ elements that sum to the target vector, the BKW algorithm
runs in time roughly qn/ log ℓ, which gives qn/ log(q/B) for LWE.

When q/B = poly(n) the running time is qn/ log n. In some appli-
cations, we want q/B = 2

√
n or something. In this case, the running

time of BKW is much better: q
√

n or so.
As the modulus-to-noise ratio size grows then, the security param-

eter n has to grow as well to keep the same level of LWE hardness.

Lattice-basis reduction

The last class of attacks we will discuss uses the LLL algorithm of
Lenstra, Lenstra, and Lovász. I am going to be even more hand-wavy
here than I was with the other two attacks.

I’ll describe this as an algorithm for the decision problem.

The LLL algorithm is a polynomial-time algorithm with the fol-
lowing API:

• Input: A matrix A ∈ Zm×n. Notice that this matrix is over the
integers, not modulo q.

• Output: A non-zero vector x ∈ Zn such ∥Ax∥2 ∈ Zm is
“small.”

The promise of the algorithm is that it returns a vector x such that
∥Ax∥2 is within a factor of 2m (I am being VERY imprecise here) of
minx∈Zn ∥Ax∥2.

If we look at the matrix

A′ =
(

A∥b∥qI
)

,

we know that there is an x such that ∥A′x∥2. That vector is x∗ =

(s∥ − 1∥∗), for which we have ∥A′x∗∥2 ≈ Bm.
In contrast, if we are looking at a random non-LWE instance A′ =

(A∥b∥qI), we will have minx ∥A′x∥2 ≈ qn/m.
If A′ were not structured (i.e., not an LWE instance), we would

expect the shortest vector to have size q(m−n)/m, via an argument that
we won’t look at. So if LLL returns a very short vector, we will know
we have an LWE instance. If not, then not.

We will expect to see a “gap” whenever:

2mB < q(m−n)/m.
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We can set m ≈
√

n log q. This tells us that the attack works when-
ever q

√
n ≪ q/B. So if q is exponential in n and B = poly(n), this

attack may work.

References

[1] Sanjeev Arora and Rong Ge. New algorithms for learning in
presence of errors. In International Colloquium on Automata, Lan-
guages, and Programming, pages 403–415. Springer, 2011.

[2] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant
learning, the parity problem, and the statistical query model.
Journal of the ACM (JACM), 50(4):506–519, 2003.

[3] David Wagner. A generalized birthday problem. In Annual
International Cryptology Conference, pages 288–304. Springer, 2002.


	Outline
	Introduction
	An algebraic attack on LWE
	BKW attack
	Lattice-basis reduction

