
Applications of MPC
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 18 (April 10, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Reminder: Secure multiparty computation

• Client-server model

• Private aggregation

• Security against malicious clients

Introduction

As a motivating application, consider the following problem: a web-
browser vendor wants to know how many of its users use incognito
mode (or private-browsing mode) without learning which users use
the feature.

We know in principle that we can solve this problem with secure
multiparty computation: every user holds a bit (whether they used
incognito mode or not) and we want to count up the number of “1”
bits.

This is an example of a “private-aggregation” problem. Private ag-
gregation shows up often when we want to collect telemetry/usage
data in a privacy-protecting way.

Concrete efficiency of multiparty computation

So far, we have looked at secure multiparty computation from a
theoretical perspective. In this view:

1. we model a computation as an arithmetic circuit (i.e., a circuit with
+ and × gates modulo p) and

2. we treat all parties as having point-to-point secret and authenti-
cated communication channels.

applications of mpc 2

In practice, each of these two simplifying assumptions is problem-
atic:

1. Many computations do not naturally have “nice” representations
as arithmetic circuits. In particular, a Python program that runs in
time T could blow up into a circuit of size roughly T2 or worse.
So if your Python program runs in 220 steps, which would take
roughly one millisecond on your laptop to execute, you could
end up with a circuit of roughly 240 gates. To execute the BGW Here we are not even accounting for the

fact that executing one step of a Python
program might take millions of gates to
simulate in a circuit. So the true costs of
this multiparty computation could be
much worse.

protocol to securely compute this function among n parties would
then require each party to transmit roughly n terabytes of data.

2. If the number of parties is in the millions, it may be infeasible for
them all to have point-to-point communication links with each
other. It would in principle be possible to proxy all of the party-to-
party communication through a central server, but in a dynamic
environment such as the Internet, it may be difficult to even nail
down who the parties are, much less have them all agree on shared
secrets with each other.

So, if we want to use secure multiparty computation in practice,
what are we to do? We are going to cheat in two different ways.

Avoid large circuits: Handle only linear functions

As we discussed when we talked about BGW, computing linear func- A linear function is just a circuit
that only has addition gates and
multiplication-by-constant gates.

tions is easy in a multiparty setting: computing such functions does
not even require any communication between the parties, apart from
that required to secret-share the data at the start and reconstruct it at
the end.

If we know how to do secure multiparty computation for linear
functions very efficiently, let’s just do that and only that.

It turns out, with a few tricks caveats that we will not get into, that
computing linear functions is already enough to compute a bunch of
useful statistical functions:

• sum, average

• variance,

• most popular (approximate),

• . . .

For the rest of this lecture, we will focus on variants of the sim-
plest case: every client i ∈ {1, . . . , n} has a secret value xi ∈ Zp and
we want to securely compute the sum ∑n

i=1 xi ∈ Zp, where p is a
prime larger than the number of parties n. As one example of this functionality:

Computer scientists at BU used a mul-
tiparty computation for this function
to compute aggregate salary data for
Boston-area companies.

https://www.bu.edu/articles/2015/computational-thinking-breaks-a-logjam
https://www.bu.edu/articles/2015/computational-thinking-breaks-a-logjam

applications of mpc 3

Avoid client-to-client interaction: The client/sever model

The next performance cheat that we will use gets rid of the need for
client-to-client communication entirely. This is convenient because
the set of clients may evolve quickly over time (before even a single
iteration of the multiparty protocol has completed) and also because
communication is costly.

The idea is to shift most of the work of running the multiparty
computation onto a small number of powerful parties (“servers”)—
maybe only two or three. Each client secret-shares their input to
the k � n servers, who run the multiparty computation amongst
themselves and return the answer to the clients.

This approach has major benefits in terms of communication cost:
Each client only communicates with the k servers and each client’s
communication cost is independent of the number of clients. Compare this per-client cost with that

of BGW.In addition, we only need to worry about keeping the k � n
servers online in steady state. To participate in the computation, each We might have a few large tech compa-

nies run the servers here.client only needs to stay online long enough to submit shares of its
input to the servers.

The downside of this approach is security: An attacker now only
needs to compromise k � n servers to violate the privacy of (i.e.,
recover the secret inputs of) all clients. For example, if k = 2, then
if the two servers decide to get together and share their information,
they learn the private data of all clients.

We will ask for two security properties:

Privacy against malicious servers and clients. Intuitively, we want
that a coalition of up to t = k− 1 servers and any number of clients
cannot learn anything about the honest clients’ inputs except their
sum.

More formally, for every p.p.t. adversary A controlling at most t =
k− 1 servers and any number of clients, there exists a p.p.t. simulator
S that can simulate the adversary’s view in the real protocol given
f (x1, . . . , xn). This is just a specialization of the

general MPC definition to our setting.
Security against malicious clients. Intuitively, we want to make sure
that any number of colluding malicious clients cannot mess up the
computation of the aggregate statistic. Another way to say this is that
the “only thing” that malicious clients can do to affect the protocol
output is to choose their own inputs.

More formally, for every p.p.t. adversary A controlling any num-
ber of clients in the real world, there exists a p.p.t. simulator S con-
trolling the same subset of clients in the ideal world such that for all
inputs x1, . . . , xn,

RealA(x1, . . . , xn)
c≈ IdealS (x1, . . . , xn),

applications of mpc 4

where RealA(x1, . . . , xn) is the output of the honest parties after run-
ning the real protocol and IdealS (x1, . . . , xn) is the output of the
honest parties (with the adversarial parties controlled by the sim-
ulator) after all parties hand their inputs to an oracle that returns
y = f (x1, . . . , xn) to all parties.

A semi-broken scheme

Back to our private-aggregation example: each client i holds a bit
xi ∈ {0, 1} and the servers want to compute the sum of these bits
∑n

i=1 xi over the integers.
To run a multiparty computation for the linear function

f (x1, . . . , xn) =
n

∑
i=1

xi ∈ Zp

among n clients and k servers in the client/server model:

• Clients: Secret-share inputs. Each user i ∈ {1, . . . , n} secret
shares their input xi into k shares and sends one share to
each server. If we are using k-out-of-k secret sharing, we can
use simple additive secret-sharing instead of Shamir. Everything we discuss here will also

work with Shamir secret-sharing or any
other “linear” secret-sharing scheme.That is, each client i chooses xi1, . . . , xik ∈ Zp to be inde-

pendent uniform random values in Zp subject to the con-
straint

xi = xi1 + · · ·+ xik ∈ Zp.

To each server j ∈ {1, . . . , k}, the client sends the secret share
xij ∈ Zp.

• Servers: Run multiparty computation. The k servers run a k-
party computation to compute the value y = f (x1, . . . , xn) ∈
Zp.

In particular, each server j ∈ {1, . . . , k} just broadcasts the
sum of the shares it received:

yj =
n

∑
i=1

xij ∈ Zp.

The servers reconstruct the output as y = y1 + · · ·+ yj ∈ Zp.

• Servers: Broadcast output. (If necessary.) The servers send
the output y back to the clients.

Concrete efficiency. Each client transmits only k elements in Zp, inde-
pendent of the total number of clients. Each server transmits a single
Zp element. This is really cheap.

applications of mpc 5

Privacy against malicious servers. To show security, we need to show
that there is a simulator S that can simulate the adversary’s view
of the real protocol execution. The simulator here just picks uni-
form random values for each of the messages it receives from honest
parties subject to the constraint that the sum of all of these values
is equal to f (x1, . . . , xh), where (x1, . . . , xh) are the honest parties’
inputs.

Security against malicious clients. This scheme actually does NOT
provide security against malicious clients, in the way we defined.
Each client is supposed to submit a value in {0, 1} but a malicious
client can submit any value in Zp, where p is large.

In particular, consider an adversarial client that sends a secret
sharing of a value r ∈ Zp \ {0, 1}. If we let client n be the adversarial
one, the output of the protocol will now be r + ∑n−1

i=1 xi, for some
potentially large value r.

There is no way to simulate this malicious client’s behavior in the
ideal world: there is no input in {0, 1} for the adversarial party that
can “explain” the protocol’s output in the real world.

Protecting against malicious clients with zero-knowledge proofs on
secret-shared data

The problem that our simple multiparty protocol has is that any
client can submit shares of a value x 6∈ {0, 1} and the servers have no
way to know that this has happened.

We will use a new type of zero-knowledge proof to protect against
this sort of misbehavior. The basic idea is that after the client sends
shares of its private input to the servers, the client will prove to the
servers in zero knowledge that the servers’ shares add up to a value
in {0, 1}. Only after the servers verify this proof will they accept the
client’s input. In this way, the servers can protect against any fishy
behavior by the client.

Large-scale deployments of private aggregation, by Apple, Google,
Mozilla, and others, use these zero-knowledge proofs on secret-
shared data to protect against malicious clients.

The setup.

We have k servers/verifiers V1, . . . , Vk, each holding one value in
z1, . . . , zk ∈ Zp, and we have a client/prover P holding the value
z = ∑k

i=1 zi ∈ Zp The verifiers either communicate over point-to-point
channels, as in BGW, or potentially a broadcast channel. We also have

applications of mpc 6

a language L ⊆ Zp of “valid” inputs. In our private-aggregation
setting, we take L = {0, 1} ⊆ Zp.

The client’s goal is to prove to the servers that its input is valid—
that is, that z ∈ L.

The security goals.

Let 〈P, V〉(z̄) denote the output of verifiers V1, . . . , Vk on inputs z̄ =

(z1, . . . , zk) at the end of the protocol execution.
As in the zero-knowledge proofs we have seen, we want three

properties to hold. The following properties are information theoretic:
they require no computational assumptions.

• Completeness. If all parties are honest, the verifiers accept.

That is, for all z̄(z1, . . . , zk) ∈ Zk
p such that z = ∑k

i=1 zi ∈ L,

〈P, V〉(z̄) = 1.

• Soundness. If the verifiers are honest, then the verifiers reject
a cheating prover’s input.

That is, for all z̄ = (z1, . . . , zk) ∈ Zk
p such that z = ∑k

i=1 zi 6∈ L,
and all malicious provers P∗,

Pr[〈P∗, V〉(z̄)] ≤ “small”.

• Zero knowledge. A malicious strict subset of verifiers learns
nothing about the honest client’s input, apart from the fact
that it is in L.

That is, for all adversarial coalitions of verifiers V∗ ⊂ {V1, . . . , Vk},
where |V∗| < k, there exists a simulator S such that for all Here,

s≈ denotes statistical closeness of
two probability distributions.z̄ = (z1, . . . , zk) ∈ Zk

p such that z = ∑k
i=1 zi ∈ L,

S s≈ {ViewV∗(z̄)},

where ViewV∗(z1, . . . , zk) is the adversarial verifiers’ view
of the protocol execution with P and the honest verifiers on
inputs z̄.

The proof system.

The basic idea is a flavor of a technique due to Ishai, Kushilevitz,
Ostrovsky, and Sahai called “MPC in the head.” We will only sketch
the proof system informally here.

The prover and verifiers will cook up an arithmetic circuit that out-
puts “0” if and only if its input is “valid.” That is, the proof system
will be relative to a circuit C : Zp → Zp such that for all z ∈ Zp,
we have that C(z) = 0 ⇔ z ∈ L. As we have already seen, if L is

applications of mpc 7

poly-time computable, then we can cook up a poly-size circuit C that
has this property.

When L = {0, 1}, we have C(z) = z(z− 1) ∈ Zp.
Since we have already seen BGW, let’s tweak the definition slightly

to accommodate BGW. We will require security to hold only against
t < k/2 malicious verifiers and we will replace additive secret sharing
everywhere with Shamir secret sharing. The basic idea is otherwise
the same.

At the start of the protocol, the verifiers hold t-of-k secret shares of
the prover’s input z ∈ Zp.

• The prover simulates the BGW multiparty computation be-
tween the k verifiers, computing the value C(z) on their in-
puts..

At the conclusion of this simulation, the prover sends to
verifier Vi, for i ∈ {1, . . . , k}, a transcript of its view in the
simulated BGW protocol execution.

• Each verifier Vi, for i ∈ {1, . . . , k} first checks that its tran-
script is locally consistent: the verifier checks that its input
zi is equal to its input in the simulated execution. Then the
verifier runs through the transcript, checking that each mes-
sage the simulated party sent is correct according to the BGW
protocol.

• The only other check that the verifiers need to do is to ensure
that the their transcripts are consistent—that at each step the
message that party i sent to party j in the transcript is the
same message that party j received from i over their point-to-
point channel.

To do this, each pair of verifiers takes a hash of the messages
sent over their point-to-point channel. This can be a collision-resistant hash

function or even a simpler information-
theoretic one.The verifiers exchange their hashes and check that they

match.

• If the simulated output of the BGW protocol has C(z) = 1,
then the verifiers accept. Otherwise they reject.

Efficiency. The prover must send each verifier a number of Zp ele-
ments proportional to |C|. So the circuit C must be simple/small for
efficiency. The verifiers only exchange on Zp element for each client.

To sketch the security argument:

• Completeness. Follows from BGW.

• Soundness. Follows again from BGW. For the prover to
cheat, there must be at least one message in one transcript

applications of mpc 8

that deviates from what the party in BGW would have sent.
The verifiers’ checks will catch this.

• Zero knowledge. Follows again from BGW. The transcript
leaks nothing to a malicious coalition of verifiers. The veri-
fiers only exchange a single message with each other to check
the transcripts. The only information that a malicious sub-
set of verifiers learns from the honest parties’ messages is
the hash of each set of messages sent over the point-to-point
channels. The malicious verifiers already have these mes-
sages, so it is possible to simulate these messages without the
honest parties’ inputs.

Outlook

As long as we confine

References

	Outline
	Introduction
	Concrete efficiency of multiparty computation
	A semi-broken scheme
	Protecting against malicious clients with zero-knowledge proofs on secret-shared data
	Outlook

