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Motivation

Suppose a set of n parties, denote by P1, . . . , Pn, with private inputs
x1, . . . , xn want to compute a function f (x1, . . . , xn). This task can
be achieved using a multi-party computation (MPC scheme). MPC

enables multiple parties to jointly compute a function over their
inputs while keeping those inputs private. It has several practical
applications across various domains. Some examples are:

• Privacy-Preserving Data Analysis: MPC allows multiple
parties to analyze sensitive data collaboratively without
revealing individual inputs. This is particularly useful in
sectors like healthcare, finance, and market research, where
data privacy is critical but collaborative analysis is necessary.

• Secure Machine Learning: MPC can be used to train machine
learning models on combined datasets from multiple sources
without sharing the raw data. This is beneficial in situations
where data sharing is restricted due to privacy concerns or
regulations.

• Secure Auctions and Bidding: In auction scenarios, MPC

ensures fairness and privacy by allowing bidders to submit
encrypted bids, preventing bid manipulation and preserving
bidder anonymity.
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Definition

We need to define the model of communication and security.

The Model. In the MPC model we assume that all n parties are con-
nect via private and authenticated point-to-point channels, which means
that each pair of parties Pi and Pj can send each other messages via
their point-to-point channel in a way that only they can send and re-
ceive the bits that are communicated, and no other party can read or
tamper with these messages. The reason we assume the existence of
such channels is that we know how to implement them using encryp-
tion schemes and signature schemes, the former to make the channel
private and the latter to make it authentic.

We also assume a synchronous network, where the protocols pro-
ceed in "rounds", and at the end of each round all the messages that
were sent were received. This assumption is not necessarily realistic
and is made to simplify protocol design. There are various tech-
niques in the literature on dealing with the asynchronous setting
(which we will not get into in this class).

Defining Security. As we saw in the course of the the semester, defin-
ing security of cryptographic primitives is tricky. The case of MPC is
no different and in some sense is the trickiest of them all.

Take 1: A MPC protocol is secure if by the end of the protocol no
party learns any information about the other parties’ inputs.

Problem: This is impossible to achieve since the output itself f (x1, . . . , xn)

reveals information about the other parties’ inputs.

Take 2: A MPC protocol is secure if by the end of the protocol no
party learns any information about the other parties’ inputs, except
of f (x1, . . . , xn).

Problem: This does not provide the desired security guarantee. We
want the inputs to be “independent.” Consider for example the auc-
tion setting, and suppose we do an MPC to compute who is the party
with the highest bid. It is not enough to say that I don’t learn any-
one’s bid. We need to ensure that I cannot somehow outbid you by 1

(without knowing your bid).

Take 3: A MPC protocol should be as secure as an “ideal world”
implementation, where each party Pi sends her secret input xi to a
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trusted party and then the parties receive f (x1, . . . , xn). This is for-
malized below

Definition 1. An n-party protocol securely computes a function f
in the presence of at most t corruptions, if for every (PPT) adver-
sary A“controlling” at most t parties in the real world, there exists
a (PPT) simulator S “controlling” the same subset of parties in the
ideal world, such that for any set of inputs x1, . . . , xn,

RealA(x1, . . . , xn) ≡ IdealS (x1, . . . , xn)

where RealA(x1, . . . , xn) is the output of all the parties after running
the protocol, where the adversarial party output whatever they want;
IdealS (x1, . . . , xn) is the output of all the parties after handing their
inputs to the trusted party, who computes f on their input and re-
turns the output y. The honest parties output y and the adversarial
parties (controlled by the simulator) output whatever they want.

As briefly mentioned in the previous lecture, we consider two
types of adversaries: honest-but-curious and malicious. A malicious
adversary that controls t-parties completely controls them and can
choose to send arbitrary messages on their behalf (and so can the
simulator in the ideal world). In the honest-but-curious setting an ad-
versary that controls t parties learns all their inputs and the messages
that they receive and send (as well as their internal state), but cannot
modify their messages.

In this class we present the MPC protocol due to Ben-Or, Gold-
wasser and Wigderson (1988). They constructed a version that is
secure against an honest-but-curious adversary that controls less
than t = n/2 parties. They also constructed a protocol that is secure
against a malicious adversary that controls less than t = n/3 parties.
We will only cover their protocol in the honest-but-curious setting.

We note that their protocol is information theoretically secure! It
does not rely on any cryptography, and is secure even if the adver-
sary is all powerful. We note that if we rely on cryptography

we can get security against any number
of corruptions!

The BGW Protocol [1]

The high-level idea behind the BGW is the following. It consists of
two stages:

Phase 1: Secret-sharing of the inputs. First, each party secret-shares
her input among the n parties. They use the t + 1-out-of-n secret
sharing scheme of Shamir (that we learned in class). Recall that an
adversary that controls at most t parties learns nothing (information
theoretically).
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Formally, each party Pi does the following:

1. Select uniformly t coefficients a1, . . . , at from GF[p], and let qi(x) =
si + a1x · · ·+ atxt.

2. Send qi(j), to party Pj for all j ∈ [n].

Phase 2: Computation on shares. Next the parties jointly compute the
function f . Think of f as being represented as an arithmetic circuit
with addition gates and multiplication gates modulo 2. The parties
will jointly compute each gate in a way, that given shares of the input
wires to the gate they end up with shares of the output wire to the
gate.

Addition gates: Let g be an addition gate with input gates with val-
ues p(0) and q(0). Assume parties hold shares of p(0) and q(0) (i.e.,
party Pi holds p(i) and q(i)). Each party Pi computes a secret share of
(p + q)(x) (which is a secret share of p(0) + q(0)), by setting the new
share to be p(j) + q(j). Note that no interaction was required here!
The parties did this computation locally.

Remark. Note that the addition is modulo p and not modulo 2. But
that is ok since for every a, b ∈ {0, 1},

a + b (mod 2) = a + b − ab (mod p)

We also note that the parties can compute a gate that is multiplica-
tion by scalar (modulo p) by simply multiplying each share (locally)
by that scalar.

Multiplication gates: Let g be a multiplication gate with input gates
with values p(0) and q(0). Assume the parties hold shares of p(0)
and q(0) (i.e., party Pi holds p(i) and q(i)). It is tempting to simply
multiply the shares and set the share of gate g be p(i) · q(i). The
problem is that this increases the degree of the polynomial from de-
gree t to degree 2t. So, now we will need 2t + 1 parties to reconstruct,
and this number would grow with every multiplication gate. Never-
theless, this is the first step: Each party Pi computes vi = p(i) · q(i).
Then, the parties reduce the degree of the secret sharing polynomial
from 2t to t. This step involves interaction. Actually, all the parties
need to do is to share the shares! Each party Pi secret shares vi using
a t-out-of-n Shamir secret sharing scheme. Next class we will argue
that this is enough to locally compute shares of of the output gate
with respect to a degree t polynomial.
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