
Lattice-based signatures
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 14 (March 20, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Reminder: Learning-with-errors assumption

• “Proving knowledge” of an LWE secret in zero knowledge

• Digital signatures

– Definition

– Construction from ZK proof of knowledge

• Implementation issues

Plan for this lecture

One of the goals of this course is to teach you the fundamentals of
lattice-based cryptography. As we have discussed, these tools are
almost certain to displace classical cryptosystems (Diffie-Hellman,
RSA, ElGamal, etc.) in the near future. For example, the NSA has asked its

vendors to transition to using post-
quantum algorithms by 2035.

The two most widely used public-key primitives are key-exchange
mechanisms and digital signatures. We have already seen lattice-
based key exchange; today we will see lattice-based digital signa-
tures.

The scheme I will present is not exactly the Dilithium scheme that
NIST is standardizing, but it follows the same general strategy. If we
have time at the end of the lecture, I will sketch the most important
differences.

The general approach for constructing signatures today will be:

1. Construct an interactive protocol that “proves knowledge” of an
LWE secret. In practice, we typically construct

lattice-based signatures schemes from
the hardness of the related “short
integer solutions” (SIS) problem. Since
have we already seen LWE earlier in the
semester, I thought I would stick with
LWE.

2. Use Fiat-Shamir to convert it into a non-interactive argument.

3. Make one tweak to turn the non-interactive argument into a
digital-signature scheme.

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://pq-crystals.org/dilithium/index.shtml

lattice-based signatures 2

Reminder: Learning with errors

The learning-with-errors assumption is parameterized by integers m,
n, and q, and an error distribution χ over Zq. The (m, n, q, χ)-LWE as-
sumption asserts that the following distributions are computationally
indistinguishable: (A, A · s + e) :

A←R Zm×n
q

s←R Zn
q

e←R χm


c≈
{

(A, u) :
A←R Zm×n

q

u←R Zm
q

}
.

For the rest of this discussion, think of χ as being the uniform
distribution over {−B, . . . , B} ⊆ Zq. It turns out (in a non-obvious In practice, we typically set χ to be a

discrete Gaussian or binomial distri-
bution. Using the uniform distribution
over a small range also works, with
some loss in efficiency, but it simplifies
the discussion.

way) that if the LWE assumption holds, then the function fA : Zn
q ×

{−B, . . . , B} → Zm
q , defined as:

fA(s, e) := As + e ∈ Zm
q , (1)

is a one-way function. The restriction that the error vector e here Recall that we say that a vector v is
“B-bounded.” if ‖v‖∞ ≤ B.is B-bounded is crucial. If we do not require the error vector to be

“short,” then the function fA is no longer one-way. (Think about why
this would be.)

Proving knowledge of an LWE secret in zero knowledge

Say that you and I both hold an LWE instance (A, b). I would like
to prove to you that I know a secret s and B-bounded error vector e
such that b = As + e ∈ Zm

q . The direct way for me to prove this to
you is to just send you the pair (s, e). You can confirm yourself that
the error vector is short and that fA(s, e) = b.

A more interesting challenge, which ends up being very relevant
for digital-signature schemes, is for me to prove to you that I “know”
a pair (s, e), while revealing no information to you about these val-
ues. Looking ahead, the pair (A, b) will be

the public key for the signature scheme.
The pair (s, e) will be the secret key.
And a signature will prove knowledge
of the secret key.

More generally, we can think of any poly-time computable func-
tion f : X → Y . The verifier has y ∈ Y and wants to be convinced
that the prover “knows” an x ∈ X such that f (x) = y. The proof
should reveal nothing else about x. We can express our LWE task as a
special case of this one, where we set f := fA.

Defining knowledge
Rather than talking about y = f (x),
the formal style is to think about an NP
relation R of instance-witness pairs.
The verifier takes as input a value v and
proves knowledge of an NP witness w
such that (v, w) ∈ R. Since many of
you may not have seen NP relations
in much detail before, I prefer to stick
with this simpler formalism.

We have already discussed interactive proofs at length. In that con-
text, we talked about a prover convincing a verifier that some fact is
true: that a graph G is 3-colorable, that a Boolean circuit C run on
input x outputs 1, and so on.

lattice-based signatures 3

Here, we are asking for something different: we want the the
prover to convince the verifier that the prover knows something. It
is not enough for the prover to convince the verifier that there exists
some x ∈ X such that y = f (x). The verifier should be convinced that
the prover knows such a solution x. I will sometimes call the value x here

“the witness.”To even begin to construct such a proof system, we first have to
answer a philosophical question: What does it mean to “know some-
thing?” More specifically, what does it mean for a Turing machine
to “know something?” We need a definition of knowledge before we
can hope to construct a “proof of knowledge.”

Cryptographers have come up with a very clever and very natural
definition for “knowledge” in this setting. It is one of those defini-
tions that is obvious in hindsight but that is not at all obvious before
you have seen it. The idea is to say that a prover “knows x” if it is A similar definition might be equally

applicable to defining human knowl-
edge.

possible to extract x from the prover under a vigorous enough inter-
rogation.

In particular, we will say that an interactive proof has knowl-
edge soundness if there is an efficient algorithm that “extracts” the
witness x from any prover P∗ that convinces the verifier with good
probability.

For simplicity, we will restrict ourselves to three-move protocols in
which the prover sends the first message. These are sometimes called
“Sigma protocols.”

In these three-move protocols, we can consider running P∗ for-
ward to get an accepting transcript (v, c, z), then rewinding P∗ until
the moment before the verifier sent it the challenge, and then run-
ning P∗ again on a different challenge to obtain a second transcript
(v, c′, z′). We will say that the protocol satisfies knowledge sound-
ness if it is possible to extract a witness from this pair of accepting
transcripts.

Zero knowledge proof of knowledge

We say that a three-move interactive protocol (P, V) is a zero-knowledge
proof of knowledge for preimages of f : X → Y if it satisfies these
three properties: I use 〈P(x) ↔ V(f (x))〉 to denote the

output of the interaction between the
prover on input x, P(x), and the verifier
on input f (x), V(f (x)).

• Completeness: (When prover and verifier are honest.) If the
prover “knows” x, it will always convince the verifier that it
does. Formally, for all x ∈ X ,

Pr[〈P(x)↔ V(f (x))〉 = 1] = 1.

• Knowledge soundness: (Protection for the verifier against a
cheating prover.) The only way that a cheating prover can
convince a verifier V(y) to accept, is if the prover “knows” an

lattice-based signatures 4

x ∈ X such that f (x) = y. In particular, we can extract such
an x from any prover P∗ with roughly the same probability
that that P∗ convinces the verifier.

Formally, we say that a protocol has knowledge soundness with
knowledge error ε if there exists a p.p.t. extractor Ext such
that for all cheating provers P∗ and all y ∈ Y :

Pr[ExtP∗(y) = x s.t. f (x) = y] ≥ Pr[〈P∗, V(y)〉 = 1]− ε.

• Zero knowledge: (Protection for the prover against a cheating
verifier.) The verifier learns nothing about x during its interac-
tion with the prover, apart from the fact that y = f (x).

Formally, for all (possibly malicious) verifiers V∗, there exists
a p.p.t. algorithm Sim, called “the simulator,” such that for all
x ∈ X ,

{View of V∗ in 〈P(x)↔ V∗(f (x))〉} c≈ {Sim(f (x))}.

We already spoke briefly about the intuition behind this definition
of zero knowledge: The idea is that you have not learned anything
from an interaction with P, if you could sit at home and write down
a transcript of your interaction with P even without ever talking to P.

This zero-knowledge property seems at odds with knowledge
soundness: how can we say that the verifier learns nothing from
P when it’s also possible for the extractor to somehow extract the
preimage (witness) x from P?

The key is that running the extractor requires having the code
of P in your hand: the extractor may need to run P forwards and
backwards to extract the preimage. In contract, in a real interaction,
the verifier communicates with P over a network and P will never
rewind itself for the verifier’s benefit. The knowledge-soundness def-
inition effectively says that if you could obtain the code of the prover
(rather than just talking to the prover over the network), you could
extract the witness from it.

Protocol: Proving knowledge of an LWE secret

The proof is relative to LWE parameters (n, m, q, χ) and a public
matrix A ∈ Zm×n

q . The proof makes use of a second error distribution
χ′ over Zq that is B′-bounded. I will discuss this more after giving
the protocol.

The interaction proves knowledge of a vector s ∈ Zn
q and B-

bounded vector e ∈ Zm
q such that As + e = b. The interaction is

between the prover, holding (s ∈ Zn
q , e ∈ Zm

q) and the verifier,
holding b ∈ Zm

q . The prover and verifier exchange three messages:

lattice-based signatures 5

• Step 1: Commitment. The prover essentially cooks up a new
fresh LWE instance and sends it to the verifier. That is, the
prover computes

v← Au + e′ ∈ Zm
q for u←R Zn

q , e′ ←R χ′m.

The prover sends v = Au + e′ ∈ Zm
q to the verifier.

• Step 2: Challenge. The verifier chooses β ←R {0, 1} and sends
β to the prover.

• Step 3: Response. The prover responds with:

z =

u if β = 0, and

u + s if β = 1.

The verifier accepts the proof if

(v + βb−Az) ∈ Zm
q

is (B + B′)-bounded.

Let us now make sure that the protocol satisfies our three proper-
ties.

Completeness. By construction:

v + βb−Az = v + βb−A(u + βs)

= (Au + e′) + β(As + e)−A(u + βs)

= e′ + βe.

Since e is B-bounded and e′ is B′-bounded, their sum is (B + B′)-
bounded and the verifier always accepts.

Knowledge soundness. We need to construct an extractor that extracts
a witness x from a cheating prover P∗. We will only sketch the idea
here.

The idea is that the extractor Ext runs the protocol with prover P∗

to completion, getting a transcript (v, c, z). The extractor then rewinds
the prover P∗ until the moment after it send its commitment v. The
extractor then runs the protocol to completion with a fresh random
challenge c′ to get a transcript (v, c′, z′).

Provided that c 6= c′, which happens with probability 1/2, we can
extract.

That is the vectors e0 and e1 are (B + B′)-bounded:

e0 = v−Az ∈ Zm
q

e1 = v−Az′ + b.

lattice-based signatures 6

The extractor then subtracts the first from the second to get:

e1 − e0 = A(z′ − z) + b

A(z′ − z) + (e1 − e0) = b.

And now the extractor returns the pair (s, e), where s = z′ − z and
e = e1 − e0.

Observe we have that (1) As+ e = b and (2) e is (B+ B′)-bounded,
so indeed the pair (s, e) is a valid LWE solution.

We will not prove it here, but the knowledge error of this protocol
is ≈ 1/2.

More generally, if a Sigma protocol like this has knowledge sound-
ness, then the best attack we know runs in time 1/ |challenge space|.

More precisely, if there is a malicious
prover that can cheat in the sigma
protocol with probability ε, we can
use it to invert f with probability
1/ |challenge space|+

√
ε. See Theorem

19.14 in Boneh-Shoup for details.

Zero knowledge. Zero knowledge here is a bit more slippery. The
key point to notice is that with probability 1/2, whenever β = 1,
the verifier obtains the vector e + e′, as we computed when arguing
completeness.

Now, the e part is constant over each protocol run—that error term
is part of the prover’s secret input. In contract, the prover samples e′

freshly at random from χ′m with each protocol run.
If χ = χ′ and both are B-bounded for small-ish (e.g., polyno-

mial) B, then the protocol is not actually zero knowledge and we
have a problem. The issue is that, over many many protocol runs,
a verifier can take the average of many many e + e′ terms, to get a
good approximation of e. Once the verifier has e, it can recover the
secret s and it has learned the prover’s entire input.

The key to getting zero knowledge then, is for the prover to sam-
ple e′ from a much wider distribution. That is, B′ � B. Then we can
argue that e′ is big enough to hide e and the verifier learns nothing.

We need the following lemma, sometimes called the “smudging”
or “noise-flooding” lemma:

Lemma 1. Let e ∈ {−B, . . . , B} be a fixed integer, let e′ ←R {−B′, . . . , B′}
be chosen at random. Then the advantage of every algorithm at distinguish-
ing e′ from e + e′ is at most B/B′.

The lemma implies that as long as B′ = 2λB, on security parameter
λ, the vector e + e′ in our protocol is as good as an independently
sampled random vector with elements uniform in {−B, . . . , B}. Having to choose B′ so large is annoy-

ing since now we need the modulus
q � B′ � B, which implies that q
must be exponential in the security
parameter. So instead of q ≈ 232, we
might need q ≈ 2512 or something,
which slows down all of the operations.
Still, if we take the lattice dimension n
large enough, we can satisfy all of these
constraints while ensuring that LWE is
still (apparently) hard.

Let’s now try to construct the simulator for a malicious verifier V∗.
The simulator works as follows:

Sim(b) :

• Make a guess β̂ ∈ {0, 1} of the challenge.

lattice-based signatures 7

• Choose a random z←R Zm
q and e′ ←R χ′m.

(Pick the last protocol message first.)

• Compute v = Az− β̂b + e′ ∈ Zm
q .

(Compute the first message that the prover needs to send for the
verifier to accept after seeing the last message.)

• Run the verifier V∗ on first message v.

• The verifier returns a bit β. If β 6= β′, restart.

• Output (v, β, z).

Now, we must argue that this transcript is indistinguishable from a
real one. The verifier’s first message is

v = Az− β(As + e) + e′

= A(z− βs)− βe + e′.

By Lemma 1, we can say that

v
s≈ A(z− βs) + e′,

where
s≈ denotes statistical closeness.

But now the transcript is exactly as in the real protocol: the verifier
sends Au + e′ for some u ∈ Zn

q distributed uniformly over the space,
and for e′ ←R χ′m. (It just so happens that u = z − βs.) Then the
verifier sends z = u + βs as the last protocol message.

Reducing soundness error with parallel repetition

The protocol we have sketched has knowledge soundness error 1/2.
That means that the prover effectively can cheat with probability 1/2.
One way we discussed to drive the knowledge soundness down to
2t is to run the protocol t times in parallel. This has the side-effect of Honest-verifier zero knowledge essen-

tially say that an honest verifier learns
nothing (in the zero-knowledge sense)
from its interaction with the prover.
Formally, we only require the simula-
tor to output transcripts of an honest
verifier’s interaction with the prover.

weakening the zero-knowledge property to something called honest-
verifier zero knowledge, but it turns out that that is good enough for
our application.

Making it non-interactive

Finally, we can apply the Fiat-Shamir paradigm from the last lec-
ture to make this entire protocol non-interactive. In our setting, that
means that the prover will construct the challenge bits as

(β1, . . . , βt)← Hash(A, b, v), ∈ {0, 1}t

where (A, b) is the LWE instance and v is the prover’s first message.
We can now only prove security if we model the hash function

Hash(·) as a random oracle. But that is good enough in practice. In

lattice-based signatures 8

fact, we analyze most of the cryptosystems we use in practice in the
random-oracle model.

Digital signatures

It turns out that it is a very small step from the Fiat-Shamir-based
zero-knowledge proof of knowledge to an LWE-based digital-signature
scheme.

Definition

We pulled the following directly from the 6.1600 lecture notes.

Definition 2 (Signature Scheme). A signature scheme is associated
with a message spaceM and three efficient algorithms (Gen,Sign,Ver).

• Gen(1λ) → (sk, vk). The key-generation algorithm as input a
security parameter λ ∈ N and outputs a secret signing key
sk and public verification key vk. The algorithm Gen runs in
time poly(λ).

• Sign(sk, m) → σ. The signing algorithm takes as input a se-
cret key sk and a message m ∈ M, and outputs a signature σ.

• Ver(vk, m, σ) → {0, 1}. The signature-verification algorithm
takes as input a public verification key vk, a message m ∈ M,
and a signature σ, and outputs {0, 1}, indicating acceptance
or rejection.

For a signature scheme to be useful, a correct verifier must always
accept messages from an honest signer. Formally, we have:

Definition 3 (Digital signatures: Correctness). A digital-signature
scheme (Gen,Sign,Ver) is correct if, for all messages m ∈ M:

Pr
[
Ver(vk, m,Sign(sk, m)) = 1 : (sk, vk)← Gen(λ)

]
= 1.

Definition 4 (Digital signatures: Security – existential unforge-
ability under chosen message attack). A digital-signature scheme
(Gen,Sign,Ver) is secure if all efficient adversaries win the following
security game with only negligible probability:

• The challenger runs (sk, vk) ← Gen(λ) and sends vk to the
adversary.

• For i = 1, 2, . . . (polynomially many times)

– The adversary sends a message mi ∈ M to the
challenger.

– The challenger replies with σi ← Sign(sk, mi).

• The adversary outputs a message-signature pair (m∗, σ∗).
• The adversary wins if Ver(vk, m∗, σ∗) = 1 and m∗ 6∈ {m1, m2, . . . }.

https://61600.csail.mit.edu/

lattice-based signatures 9

Construction from LWE

The basic idea is that the public key is an LWE instance and the se-
cret key is a solution to the LWE instance.

To sign, the prover uses the non-interactive zero-knowledge proof
of knowledge that we sketched to prove knowledge of the LWE se-
cret, which proves knowledge of the secret key. In the proof, we salt
the hash function used in the Fiat-Shamir step with the message to
be signed. In this way, each distinct message to be signed gives a
distinct random challenge.

Why would we expect this signature scheme to be secure?
First, by the zero-knowledge property of the proof system, we

can argue that the verifier learns nothing about the secret key after
seeing many signatures, apart from what it learns via the signatures
themselves.

Second, by the knowledge soundness property of the proof sys-
tem, the verifier is convinced that the signer actually knows the secret
key. It is not possible for someone without knowledge of the secret
key to forge signatures.

The formal proof is in the Boneh-Shoup book (Chapter 19.2).

The scheme uses a hash function Hash : {0, 1}∗ → {0, 1}t, which
we model as a random oracle.

• Gen(1λ)→ (sk, vk).

– Choose LWE parameters (n, m, q, χ), where all are a
function of λ.

– Compute

A←R Zm×n
q

s←R Zn
q

e←R Zm
q

b←R As + e ∈ Zm
q .

– Set sk = (A, b, s, e), vk = (A, b).

• Sign(sk, m) → σ. Prove knowledge of a solution to the LWE
instance (A, b) using the secret key. In the Fiat-Shamir step,
use the salted the hash function Hash(m, ·). Output the proof
as the signature.

• Ver(vk, m, σ)→ {0, 1}. Run the verifier for the zero-knowledge
proof using LWE instance (A, b) and the hash function
Hash(m, ·). Accept iff the verifier accepts.

lattice-based signatures 10

Practical considerations

There are a bunch of efficiency issues with the signature scheme I
presented:

• The public key includes the matrix A, can take megabytes
or more to represent. Instead, we can represent the matrix A
using a seed and expand it using a hash function (again
modeled as a random oracle).

• Both signing and verification here require computing matrix-
vector products with the large matrix A. Schemes used in
practice replace LWE with the “Ring-LWE” variant we dis-
cussed a while back. The high-order bit is that the vectors
and matrices become polynomials. Then matrix-vector prod-
ucts become polynomial multiplications, which are much
faster.

• Repeating the protocol t = 128 times to get 128-bit security
blows up the running time and signature size by a factor of
128. Real implementations sample the challenge c from a
larger space, which means that we can set the iteration count
t smaller to get the same level of security.

• The modulus q must be� 2λ for the proof system to be zero-
knowledge. In practice we would like to use a much smaller
modulus q ≈ 232 so that we have smaller keys and faster Zq

operations.

The reason why we needed to take the bound B′ on the norm
of e′ to be so large is that we need e + e′ to completely hide
e. Choosing e′ to have gigantic entries (“noise flooding”) as
we did is one way to solve this problem.

A more clever way to solve this problem is for the signer
to run the protocol for the first two step and then to abort This is called “Fiat-Shamir with Aborts”

and is due to Lyubashevsky.if the value e + e′ is too large. By choosing the parameters
carefully, it is possible show that the resulting protocol gives
a secure signature scheme.

The NIST-standardized schemes use all of these optimizations and
many more. But the core of the schemes follows the same framework
we described here.

References

	Outline
	Plan for this lecture
	Reminder: Learning with errors
	Proving knowledge of an LWE secret in zero knowledge
	Digital signatures
	Practical considerations

