
Succinct Non-Interactive Arguments (SNARGs)
for NP
Notes by Yael Kalai

MIT - 6.5610
Lecture 13 (March 18, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• The Fiat-Shamir Paradigm

• SNARGs for low-depth computations

• Overcoming the low-depth restriction

• Succinct hash with local opening

Last class we presented the GKR protocol which is a doubly effi-
cient interactive proof for bounded depth computations. Recall that
the GKR protocol consists of a sequence of (pairs of) Sumcheck pro-
tocols, which are public coin protocols, which means that the verifier
simply sends truly random bits in each round.

Next, we will see how to eliminate interaction from the GKR pro-
tocol. More specifically, we will show a general technique for elimi-
nating interaction from any public-coin protocol.

Eliminating interaction via the Fiat-Shamir Paradigm

In 1986, Fiat and Shamir [1] introduced a paradigm for eliminating
interaction from public coin protocols. Specifically, they showed
how to take any interactive identification scheme (where a prover
proves via a public-coin interactive proof that he knows the secret
key corresponding to a given public key) and turn it into a (non-
interactive) digital signature scheme. We will learn about digital signature

schemes next class, stay tuned!This transformation is known as the Fiat-Shamir (FS) paradigm,
and it turns out that this paradigm is general enough to eliminate in-
teraction from any public-coin interactive protocol. Loosely speaking,
this is done by replacing the messages of the verifier with the hash
of the transcript thus far. In other words, in the transformed non-
interactive protocol, the prover generates each random message that

succinct non-interactive arguments (snargs) for NP 2

was supposed to be sent from the verifier by hashing the transcript of
the protocol so far.

Let us demonstrate the Fiat-Shamir (FS) paradigm for the special
case of interactive proofs that consist of only three messages, which
we denote by (α, β, γ), where β is the random message sent by the
verifier, and α and γ are the first and third messages that are sent by
the prover.

The FS paradigm proposes to use a hash function H to eliminate
interaction from this protocol by instructing the prover to generate
the entire transcript (α, β, γ) on its own, by setting β = H(α, x) where
x the instance. More generally, suppose the transcript is of the form

(α1, β1, . . . , αℓ, βℓ, αℓ+1)

where the messages αi are chosen by the prover and the messages βi

are random messages chosen by the verifier. The FS paradigm elim-
inates interaction from this protocol by having the prover generate
this entire transcript on its own subject to

βi = H(α1, β1, . . . , αi). (1)

The verifier will then check that the given transcript is accepting and
that Equation (1) holds for every verifier’s message.

Security of the Fiat-Shamir Paradigm

This paradigm is extremely simple and elegant. It is also prevalent
in practice. But the question is: is it secure? Namely, if we start with
a sound interactive proof does the non-interactive proof obtained
by applying the FS paradigm still sound? Clearly there are hash
functions for which the FS paradigm is insecure! the question is:
How do we choose a hash function H for which the FS paradigm is secure,
and does one even exists? In practice, off the shelve hash functions are
used, such as SHA-256 or SHA-3.

The Insecurity of the FS Paradigm. We first note that the FS paradigm
is not always secure. For example, it is not secure (no matter which
hash function H is used) if applied to the 3-message zero-knowledge
(ZK) protocol for 3COL. Recall that in this protocol the prover com-
mits to a (randomized) coloring of the graph, the verifier chooses a
random edge and then prover opens the commitment on this edge.
This is repeated sequentially many times to reduce the soundness
error.

The FS paradigm completely fails when applied to this protocol.
This is due to a “rejection sampling attack” which is basically the

succinct non-interactive arguments (snargs) for NP 3

“attack” used to argue that this protocol is ZK. Namely, the cheating
prover will do the following:

1. Guess the edge (u, v) that will be outputted by H.

2. Generate a commitment to an arbitrary coloring of the graph, such
that the nodes u and v are colored with distinct (and legal) colors.
Denote this commitment message by α.

3. Compute β = H(x, α), where x is the graph.

4. If β = (u, v) then the prover produces a valid opening of the
nodes u and v, and wins!

5. If β ̸= (u, v) go back to (1) and try again.

The hiding property of the commitment scheme implies that on ex-
pectation after about |E| tries (where E is the number of edges) the
cheating prover will succeed. Once he succeeds he will move to sim-
ulating the next sequential execution in a similar way.

The reason this protocol renders the FS paradigm to be insecure is
because the 3-message version does not have negligible soundness,
which allows for a rejection sampling attack. This begs the follow-
ing question: Is the FS-paradigm sound when applied to constant round
protocols with negligible soundness?

The Security of the FS Paradigm It turns out that the FS paradigm is
sound in the Random Oracle Model (ROM) when applied to any con-
stant round proof with negligible soundness. In the ROM we model
H as a truly random function that all parties (including the adversary)
have black-box access to. In this model, Pointcheval and Stern [2]
proved that the FS paradigm is secure when applied to any constant
round interactive proof with negligible soundness. Intuitively, se-
curity follows since in the ROM, there is no difference if the prover
interacts with a random function or a verifier that produces random
messages. The only thing a cheating prover can do with a hash func-
tion is “reject sample,” but this is not helpful in the constant round
setting with negligible soundness. In particular, if we run the 3COL ZK

protocol in parallel many times, and
apply the FS paradigm to this parallel
repeated protocol, then the new non-
interactive protocol is sound in the
ROM.

Security of the FS paradigm when applied to the GKR protocol

The GKR protocol is not constant round! So why should the FS
paradigm be secure when applied to it? The reason is that it has a
special soundness guarantee which is called round-by-round soundness,
which means that if you start with a false claim, after every round
you reduce the claim to another false claim with overwhelming prob-
ability (assuming the field F is of super-polynomial size or if the

succinct non-interactive arguments (snargs) for NP 4

GKR protocol is repeated in parallel). Indeed the FS-GKR protocol,
which is the FS paradigm applied to the GKR protocol is known to
be secure in the ROM. Moreover, recently it was proven to be secure
under the LWE assumption for a specific choice of H (which is not
efficient enough for practice). When people implement the FS-GKR
protocol they still do so with off-the-shelve hash functions which is
guaranteed to be sound only in the ROM, but it is good to know that
if this scheme will be broken it is not due to a flaw in the paradigm
but rather due to the bad choice of the hash function.

Succinct Non-Interactive Arguments (SNARGs)

We emphasize that the FS-GKR protocol no longer has statistical
soundness. Namely, an all powerful cheating prover can cheat and
convince the verifier to accept a false statement. Intuitively, the rea-
son is that the GKR interactive protocol does not have soundness 0,
rather there is a small (negligible) probability that the verifier ac-
cepts a false claim. So, a cheating prover can “interact” with the hash
function exponentially many times until they are successful.

Therefore FS-GKR is not a proof, since a proof is assumed to have
statistical soundness. Protocols that only have computational sound-
ness (i.e., soundness holds only against computationally bounded
cheating provers) is called an argument. With this terminology, note
that the FS-GKR protocol is a succinct non-interactive argument
(SNARG) for bounded depth computations (assuming all parties
agree on a hash function).

Overcoming the Low-Depth Restriction

We can use the GKR blueprint to construct SNARGs where the proof
size and the runtime of the verifier do not grow linearly the depth,
rather they grow only poly-logarithmically with the depth and size.
The basic idea to get around the depth restriction is to “flatten” the
circuit. Namely, suppose the prover wishes to prove to the verifier
that C(x) = y where C is of depth D and size S (think of D as
being large and the verifier cannot run in time D). The idea is for the
prover and verifier to consider a new shallow circuit C ′ that takes as
input an S-bit string, which corresponds to the values of all the wires
of C, and checks that all the gates of C are satisfied. Importantly, note Assume that S is the number of wires

in C.that C′ is very shallow and is of depth O(log S). So, the idea is to run
the GKR protocol on the shallow circuit C′.

The problem is that the verifier does not know the input to C′

since he cannot compute all the gates of C on its own – this is pre-
cisely the work we are trying to offload to the prover! As a result,

succinct non-interactive arguments (snargs) for NP 5

the verifier cannot verify the GKR protocol, since to verify it the ver-
ifier needs to compute on its own a random point in the low-degree
extension of the input to C′.

Cryptography to the rescue

To overcome this problem we have the prover compute the low-
degree extension of the input to C ′ , which is the values of all the
wires of C. Denote these values by V0 and denote by Ṽ0 its low de-
gree extension. The flattend GKR protocol proceeds as follows:

1. The prover does the following:

(a) Compute the string V0 which corresponds to all the wires in
C(x).

(b) Compute Ṽ0 which is the low-degree extension of V0.

(c) Send to the verifier a hash of Ṽ0.

2. The prover and verifier run the interactive GKR protocol (or the
non-interactive FS GKR protocol) w.r.t. C ′ on input V0.

To verify this protocol the verifier needs to check a claim of the
form Ṽ0(z) = t for given z ∈ Fm and t ∈ F.

3. The prover will open the the hash of Ṽ0 at the point z̃.

The question is how can the hash of Ṽ0 be opened succinctly? Note
that we need a collision resistant hash function H : {0, 1}N →
{0, 1}λ that can be opened to a single location succinctly, where the
opening should not grow with N. We can do this using Merkle Hash.

Merkle Hash

Given any collision resistant hash function h : {0, 1}2λ → {0, 1}λ

one can construct a collision resistant hash function H : {0, 1}N →
{0, 1}λ , where N which may be very large, such that one can “open”
to any bit of the preimage using an opening of size O(λ · log N). H
is constructed from h via a tree construction, as follows: Assume without loss of generality that

N is a power of two (i.e., is of the form
2k for some k ∈ N. This can be always
be achieved by padding.

H(b1, . . . , bN) = h(H(b1, . . . , bN/2), H(bN/2+1, . . . , bN))

The output of H needs to include the
depth of the tree in order to be collision
resistant.Remark. We note that while FS GKR was proven to be secure under

LWE (for a specific choice of a hash function for FS), such a result is
not known for squashed GKR. Squashed GKR is only known to be
secure in the ROM (with appropriate choices of parameters).

succinct non-interactive arguments (snargs) for NP 6

Remark. Computing a Merkle hash takes time which is at least linear
in the input. Thus, computing the Merkle hash of Ṽ0 takes time at
least |F|m, which limits the size of F to be relatively small. In practice
people use a primitive called polynomial commitments that allow one
to commit to a low-degree polynomial in time that is sublinear in the
field size and still open locally.

SNARGs for NP

Finally, note that the above protocol gives a SNARG for NP. The
SNARG consists of:

1. A Merkle-Hash (or a polynomial commitment) to the low-degree
extension of the witness w. Denote the low-degree extension of w
by W̃ : Fm → F.

2. A FS GKR proof that the verification circuit corresponding to the
instance x is accepting on input w.

Recall that to verify this proof the verifier needs to check the value
of W̃ at a single point z ∈ Fm.

3. An opening of the Merkle-hash (or the polynomial commitment) at
point z.

References

[1] Amos Fiat and Adi Shamir. How to prove yourself: Practical so-
lutions to identification and signature problems. In Andrew M.
Odlyzko, editor, Advances in Cryptology - CRYPTO ’86, Santa Bar-
bara, California, USA, 1986, Proceedings, volume 263 of Lecture
Notes in Computer Science, pages 186–194. Springer, 1986.

[2] David Pointcheval and Jacques Stern. Security proofs for signa-
ture schemes. In Ueli M. Maurer, editor, Advances in Cryptology
- EUROCRYPT ’96, International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Saragossa, Spain, May 12-16,
1996, Proceeding, volume 1070 of Lecture Notes in Computer Science,
pages 387–398. Springer, 1996.

	Outline
	Eliminating interaction via the Fiat-Shamir Paradigm
	Security of the Fiat-Shamir Paradigm
	Security of the FS paradigm when applied to the GKR protocol
	Succinct Non-Interactive Arguments (SNARGs)
	Overcoming the Low-Depth Restriction
	Cryptography to the rescue
	Merkle Hash
	SNARGs for NP

