
The GKR Protocol
Notes by Yael Kalai

MIT - 6.5610
Lecture 12 (March 13, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Warmup for the GKR protocol

• Low-degree Extension

• The GKR protocol

Intuition for the GKR protocol

Given a circuit C of depth D and size S, an input x ∈ {0, 1}n and an
output y, the prover needs to convince the verifier that C(x) = y. In
other words, the verifier wants to catch the prover if y is incorrect.
Here is a simple idea: The verifier will ask the prover for the value
of the two children corresponding to the output gate, and will check
consistency with y. Note that if the values are consistent and y is We assume throughout that the fanin of

every gate is ≤ 2.false, then the value of at lease one of its children must be false. The
verifier will guess which one is false randomly, and will continue
this process until a leaf xi is reached. Note that if y is false, and every
time the verifier guesses correctly who the false child is, then at the
end of this protocol the verifier will recieve a false value of xi and
thus the prover will be rejected!

This interactive proof is extremely simple, but its soundness guar-
antee is pathetic! The soundness is 1 − 2−D, since it will catch the
prover cheating only if in each and every layer it guesses correctly
who the false child is. This happens with probability 2−D. The GKR
protocol follows this blue-print but achieves better soundness since it
does this over a (polynomial) error correcting code.

the gkr protocol 2

Analogy to the Sumcheck protocol

Recall that in the Sumcheck protocol the prover convinces the verifier
that

∑
h1,...,hm∈H

f (h1, . . . , hm) = β.

One way to do this is to have the prover first send the function

g1(x) = ∑
h2,...,hm∈H

f (x, h2, . . . , hm).

The verifier will then choose at random h∗1 ∈ H and will reduce it to a
Sumcheck on m− 1 variables of the statement

∑
h2,...,hm∈H

f (h∗1 , h2 . . . , hm) = β∗1

where β∗1 = g1(h∗1). Note that if β∗ is false then β∗1 is false with prob-
ability 1

|H| . This creates a large loss in soundness, and the idea behind
the sumcheck protocol is to use the fact that f is of low degree which
intuitively allows the prover to check that all the values in H are cor-
rect simultaneously. Specifically, the verifier chooses t ←R F and uses
the fact that f is a low-degree polynomial to argue that in each round
the verifier chooses a “false” ti with probability ≥ 1 − d

|F| . So, by
relying on the fact that f is a low-degree polynomial we managed to
reduce the loss significantly!

At first it may be unclear how we use this for the GKR protocol
since we do not have any low-degree function f there. However, the
Sumcheck protocol can be used to prove that

∑
h1,...,hm∈H

f (h1, . . . , hm) = β.

for any f : Hm → H, where f is not necessarily low degree. Namely, It may be helpful to focus on the case
H = {0, 1}.we can use the Sumcheck protocol to prove that for any function

f : Hm → H it holds that

∑
h1,...,hm∈H

f (h1, . . . , hm) = β.

This can be done using the concept called low-degree extension.

Low-Degree Extension

A low degree extension (LDE) of a function (not necessarily a poly-
nomial) f : Hm → {0, 1} is a polynomial function f̃ : Fm → F of
(minimal) degree ≤ |H| − 1 in each variable that agrees with f on all
inputs in the range Hm; i.e., ∀h ∈ Hm, f̃ (h) = f (h), or more concisely
f̃ |Hm≡ f . Notice that the domain of f̃ is Fm, a superset of Hm, hence
the name “extension”.

the gkr protocol 3

Theorem 1. Let f : Hm → {0, 1} be any function (i.e., an arbitrary
sequence of |H|m bits). Let F be any finite field s.t. H ⊆ F. Then there
exists a unique f̃ : Fm → F s.t. f̃ |Hm≡ f and the degree of every variable
in f̃ is at most |H| − 1.

This theorem is a generalization of Langrange interpolation to the
multi-variate setting. When m = 1, the LDE f̃ : F → F is a univariate
polynomial, which follows from Lagrange Interpolation.

The univariate case: For any f : H → {0, 1}, we can write

f̃ (x) = ∑
h∈H

f (h)χh(x)

where χh satisfies that for every x ∈ H: The function χh is known as the Kro-
necker delta function.

χh(x) =

1 x = h

0 x ̸= h

From Lagrange interpolation, we have an explicit formula for χh(·) as
a degree |H| − 1 polynomial function of x:

χh(x) = ∏
h′∈H\{h}

h′ − x
h′ − h

. (1)

The LDE theorem (Theorem 1) is a multi-variate version of this. Note that χh(x) is efficiently com-
putable since it is a degree |H| − 1
polynomial. Moreover, as we will see, it
is also efficiently computable (and low
degree) as a function of both h and x.
Namely, the function β̃(h, x) = χh(x)
is low-degree (and thus efficiently
computable.

The multivariate case: For any f : Hm → {0, 1}, we can write

f̃ (x1, . . . , xm) = ∑
(h1,...,hm)∈Hm

f (h1, . . . , hm)χh1,...,hm(x1, . . . , xm)

where χh1,...,hm satisfies that for every x ∈ Hm:

χh(x1, . . . , xm) =

1 (x1, . . . , xm) = (h1, . . . , hm)

0 (x1, . . . , xm) ̸= (h1, . . . , hm)

The explicit formula for χh1,...,hm is

χh1,...,hm(x1, . . . , xm) =
m

∏
i=1

χhi
(xi). (2)

The GKR protocol

Fix boolean circuit C : {0, 1}n → {0, 1} of size (number of gates) S
and depth D. The GKR protocol is an interactive proof for the fact
that C(x) = 1. We assume that the verifier has a succinct description
of C. Formally, we assume that C is log-space uniform i.e. it can be

the gkr protocol 4

generated by some log-space Turing Machine M. and the verifier
has M. Assume without loss of generality that C is layered which
means that each gate belongs to a layer, and each gate in layer i is
connected by neighbors only in layer i + 1. Let layer 0 denotes the
output layer and D denotes the input layer. One can always layer a circuit by

adding dummy intermediate gates.
This can be done while increasing the
depth to depth at most D2.

Recall the intuitive protocol above, where we reduce a claim about
the value of a gate in layer i to a claim about the value of a gate in
layer i + 1. The GKR protocol follows this blueprint. The protocol
consists of D-subprotocols, where a claim about the (joint) values of
gates in layer i is converted to a claim about the (joint) values of gates
in layer i + 1. Eventually, it will be reduced to a claim about the input
values (layer d), which are known to the verifier.

Detailed description of the protocol

Step 1: Arithmetize C. Convert C to a (layered) arithmetic circuit
(over GF[2]) with fan-in 2. Arithmetic circuit (over GF[2]) means that
it consists only of gates of the form ADD and MULT (where addition
and multiplication are done modulo 2). We can convert any Boolean
circuit, with gates ∧ and ¬, into an arithmetic circuit, by converting
a gate ∧ into a gate MULT, and converting a gate ¬ into a gate ADD

where we add a constant 1 as an input to the gate.

Step 2: Pick a subset H ⊆ F and an integer m such that S = |H|m.
This way, we can give each of the S gates in a given layer a unique
label encoded in Hm. A nature choice is

H = {0, 1} and m = log S.

A less natural choice but a common one is

H = {0, 1, . . . , log S− 1} and m =
log S

log log S
.

Jumping ahead the reason the latter choice is that one can take a field
F that contains H of size poly(|H|) so that

|F| >> m · |H| and |Fm| = poly(S). (3)

This cannot be done with the natural choice of H = {0, 1} since then
we need to take |F| ≥ log S, which results in |Fm| ≥ Slog log S which is
super-polynomial.

Step 3: The prover computes the values of all gates in every layer of
the circuit. For layer i, define the function Vi : Hm → {0, 1} as the
mapping from an encoding of a gate label to the value of the gate,
and Ṽi : Fm → F be its low-degree extension (LDE), which is the

the gkr protocol 5

unique function of degree ≤ |H| − 1 in each variable that agrees with
Vi on inputs in Hm.

The Protocol: The protocol consists with D “reduction” protocols,
where each reduction protocol reduces a claim of the form Ṽi(zi) = vi

about layer i to a claim of the form ˜Vi+1(zi+1) = vi+1 about about
layer i + 1. We start with the output layer where the prover claims Actually, the reduction protocol will

reduce checking two such claims about
layer i to two such claims about layer
i + 1.

that Ṽ0(z0) = v0 = 1 where z0 ∈ Hm is the label of the only non-
dummy gate in layer 0 that holds the output of the circuit. At the
end of these D reduction protocols we will be left with a claim of
the form Ṽd(zd) = vd. The verifier can check this on its own since it
knows Vd from its input values and can compute its LDE on its own
as follows:

Ṽd(zd) = ∑
h1,...,hm∈H

Vd(h1, . . . , hm)χh1,...,hm(zd)

= ∑
h1,...,hm∈H

xi χh1,...,hm(zd)

= ∑
h1,...,hm∈H

xi

m

∏
j=1

χhi
(zd,i)

where xi is the i-th bit of the input x and i ∈ [n] is the index corre-
sponding to the label (h1, . . . , hm).

The reduction protocol

For every i ∈ [D] we define two functions ADDi,MULTi : (Hm)3 →
{0, 1} as follows:

ADDi(p, w1, w2) =

1 gate p in layer i is an ADD gate connecting w1 and w2 in layer i + 1

0 Otherwise

MULTi is defined similarly with ADD replaced with MULT in the
definition. Let

ÃDDi, M̃ULTi : F3m → F

be the LDEs of ADDi and MULTi, respectively.
We can expand out the LDE definition and rewrite the claim

Ṽi(zi) = vi as
vi = Ṽi(zi) = ∑

p∈Hm
Vi(p)χp(zi)

Then we can further express Vi(p) as combination of ÃDDi, M̃ULTi:

vi = ∑
p∈Hm

∑
w1,w2∈Hm

[
ÃDDi(p, w1, w2)(Ṽi+1(w1) + Ṽi+1(w2))+

M̃ULTi(p, w1, w2)(Ṽi+1(w1) · Ṽi+1(w2))
]
χp(zi)

the gkr protocol 6

This almost looks like a claim that one can run Sum-Check on.
However, recall that the Sum-Check protocol only works if the ex-
pression inside the sum is a low-degree (multi-variate) polynomial,
so we need to argue that χp(zi) is a low-degree polynomial in p.

Indeed, it turns that that we can compute χp(zi) via a low-degree
polynomial, as follows. Define β : H × H → {0, 1} as β(a, b) =

χa(b), and let β̃ : F × F → F be its LDE. For every fixed a ∈ H,
we have that the univariate polynomial β̃(a, ·) is a LDE/Lagrange
Interpolation of β(a, ·). In addition, χa(·) is also a LDE of β(a, ·).
Then by the uniqueness of LDE, we have that β̃(a, b) = χa(b) for all
a ∈ H, b ∈ F.

We can thus rewrite vi as

vi = ∑
p,w1,w2∈Hm

[
ÃDDi(p, w1, w2)(Ṽi+1(w1) + Ṽi+1(w2))+

M̃ULTi(p, w1, w2)(Ṽi+1(w1) · Ṽi+1(w2))
]

β̃(p, zi)

Denote the polynomial inside the sum by

fi,zi (p, w1, w2) =
[
ÃDDi(p, w1, w2)(Ṽi+1(w1) + Ṽi+1(w2))+

M̃ULTi(p, w1, w2)(Ṽi+1(w1) · Ṽi+1(w2))
]

β̃(p, zi)

Thus after the last round in Sum-Check for

vi = ∑
p,w1,w2∈Hm

fi,zi (p, w1, w2),

the verifier must be able to compute fi,zi (zi+1,0, zi+1,1, zi+1,2) for some
random zi+1,0, zi+1,1, zi+1,2 ∈ Fm chosen by the verifier. We assume
for now that the verifier can compute on its own ÃDDi and M̃ULTi.
This is precisely where we use the log-space uniformity condition of
the underlying circuit C.

So we reduced checking the value vi in layer to checking the value
of two elements in round i + 1. It seems like if we continue in this
way the number of elements we will need to check will grow expo-
nentially! However, surprisingly this is not the case! We can reduce
checking two elements in round i + 1 to checking two elements in
round i + 2.

The idea is to run two Sumcheck protocols (one for each element)
but where the verifier uses the same randomness in both these Sum-
check protocols! This will convert checking two elements in round i
to checking two elements in round i + 1.

References

	Outline
	Intuition for the GKR protocol
	Analogy to the Sumcheck protocol
	Low-Degree Extension
	The GKR protocol
	Detailed description of the protocol
	The reduction protocol

