
The Power of Interactive Proof Systems
Notes by Yael Kalai

MIT - 6.5610
Lecture 11 (March 11, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Outline

• Sumcheck protocol

Recap

Last lecture we defined the model of interactive proofs, which were
defined for the goal of constructing zero-knowledge proofs. Today,
and in the next few lectures, we will learn about the power of interac-
tive proofs, and their impact on how proofs are designed today.

Jumping ahead, we will show how to use interactive proofs, to-
gether with cryptographic magic, to construct “succinct proofs" of cor-
rectness. Namely, we will show how given a Turing machine M, an
input x and a time-bound T, one can compute the output y = M(x)
together with a “succinct proof" π that certifies that indeed M on
input x outputs y within T steps.

We start by demonstrating the power of interactive proofs via the
Sumcheck protocol, which is an interactive proof for a statement that
we do not know how to prove succinctly using a classical proof.

Sumcheck Protocol

Intuitively, the Sumcheck protocol proves the value of the sum of a
multivariate polynomial on exponentially many values. Specifically,
let F be a finite field. One can think of F = GF[p] which consists of
the elements {0, 1, . . . , p− 1} where addition and multiplication are
modulo p.

Definition 1 (Sumcheck Problem). Given a polynomial f : Fm → F of
degree ≤ d in each variable and a fixed set H ⊆ F, compute Often we consider the special case

where H = {0, 1}.
β = ∑

h1,...,hm∈H
f (h1, . . . , hm).



the power of interactive proof systems 2

Assuming that the verifier has oracle access to f , we will exhibit
an interactive proof for the Sumcheck problem. While this problem
seems very specific (and possibly not interesting) at first, it turns
out that this is an important building block in many of our succinct
proofs. In particular, it is the main building block in the proof that
IP = PSPACE [2] and is the main building block in the GKR protocol
which we will learn in the next lecture.

The Sumcheck protocol proceeds as follows:

1. The prover computes and sends

g1(x) = ∑
h2,...,hm∈H

f (x, h2, . . . , hm).

This is a unvariate degree ≤ d polynomial where the first argu-
ment to f is a free variable.

2. The verifier checks that g1(x) is a univariate polynomial of degree
≤ d and that ∑h1∈H g1(h1) = β. (Reject if either check fails.)

3. The verifier sends a uniformly sampled t1 ←R F.

4. The prover sends

g2(x) = ∑
h3,...,hm∈H

f (t1, x, h3, . . . , hm).

This is again a univariate degree ≤ d polynomial, where the first
argument of f has been fixed and the second argument is a free
variable.

5. The verifier checks that g2(x) is degree ≤ d and that ∑h2∈H g2(h2) =

g1(t1).

6. The verifier sends a uniformly sampled t2 ←R F.

7. The prover replies with

g3(x) = ∑
h4,...,hm∈H

f (t1, t2, x, h4, . . . , hm).

8. The verifier checks that g3(x) is degree ≤ d and that ∑h3∈H g3(h3) =

g2(t2).

9. Repeat this procedure on all other variables. The final check will
be as follows:

10. The prover sends gm(x) = f (t1, t2, . . . , tm−1, x).

11. The verifier samples a uniform tm ←R F and checks that gm(tm) =

f (t1, t2, . . . , tm) using its oracle access to f . It Accepts if and only if
all the checks have passed.



the power of interactive proof systems 3

Analysis of the Sumcheck protocol

The completeness of this protocol is straightforward so we will fo-
cus on soundness. We will not give a formal proof, rather will give a
high-level idea for why this protocol is sound. The soundness anal-
ysis is “round-by-round". Suppose that the instance is false. Namely
suppose the instance is f : Fm → F of degree ≤ d in each variable, a
set H ⊂ F and an element β ∈ F such that

∑
h1,...,hm∈H

f (h1, . . . , hm) ̸= β.

Fix any cheating prover P∗ that tries convince the verifier to accept
this false statement. We argue that for each round i, if we start with a
false claim of the form

g∗i−1(ti−1) = ∑
hi ,...,hm∈H

f (t1, . . . , ti−1hi, . . . , hm) (1)

(where g∗0 = β), then the next round claim, which is of the form

g∗i (ti) = ∑
hi+1,...,hm∈H

f (t1, . . . , ti, hi+1, . . . , hm), (2)

is also false with with probability ≥ 1− d
|F| (assuming the verifier

does not reject g∗i (·)). Thus, by a union bound, at the end of the
Sumcheck protocol the verifier will reject P∗ with probability ≥ 1−
dm
|F| . So we get “good” soundness if |F| >> dm. To see why the
round-by-round soundness holds note that if g∗i−1(ti−1) is false then
g∗i must also be false or else the verifier will reject it. This is the case
since the verifier checks that

∑
h∈H

g∗i (h) = g∗i−1(ti−1).

If g∗i is false and is of degree d then it agrees with the true polyno-
mial on at most d points, and thus g∗i (t) on a random t ←R F remains
incorrect with probability 1− d

|F| .
Communication complexity. The protocol has m rounds of commu-
nication, one for each variable of f . In each round, the prover sends
one degree-d polynomial, which is represented by d field elements;
and the verifier sends one field element ti. Therefore the communica-
tion complexity is O(dm log |F|).
Runtime. In each of the m rounds, the verifier evaluates a degree-d
polynomial on |H| points; so the verifier runtime is O(m · |H| · d ·
polylog |F|). The prover runs in time O(m · |H|m · Tf ), where Tf

denotes the time to compute f .

Remark. The Sum-Check protocol has the desirable property that
the verifier only sends uniformly sampled field elements in each



the power of interactive proof systems 4

round (each field element constitutes log |F| random bits). Such a
protocol is called a public-coin protocol. Public-coin protocols are of
great interest because as we will see, we can later use cryptography
to eliminate interaction from such protocols using the Fiat-Shamir
transform (coming up, stay tuned!).

Why do we care about the Sumcheck protocol?

Beyond being a proof of concept that interactive proofs are power-
ful, the Sumcheck protocol is extremely important in the design of
succinct proof systems. Indeed, the Sumcheck protocol was used
by Shamir [2] to construct an interactive proof for any language in
PSPACE. We will not show Shamir’s protocol, rather we will show an
alternative protocol (the GKR protocol [1]) that has efficiency advan-
tages and is conceptually simpler. The main drawback of Shamir’s
protocol is that to prove the correctness of a time T space-S computa-
tion, the runtime of the prover is ≥ 2S·logS, which may be exponential
in T. The runtime of the verifier is proportional to S. This raises the
following fundamental question:

Is proving necessarily harder than computing?

Doubly Efficient Interactive Proofs

So far we placed no restriction on the prover’s runtime, and restricted
only the verifier’s runtime. Indeed, when interactive proofs were
original defined they referred to the prover as Merlin (an all powerful
wizard). In reality, however, we do care about the computational
power of the prover. Of course, we still need to allow the prover more
computational power than the verifier, as otherwise the prover is not
helpful.

Definition 2 (Doubly-Efficient Interactive Proof (DE-IP)). A doubly-
efficient interactive proof for a language L ∈ DTIME(T(n)) is an
interactive proof such that:

1. The honest prover’s runtime is poly(T). In practice it is desirable that the
prover’s runtime is O(T).

2. The verifier’s runtime is much less, ideally Õ(n), where Õ omits
polylog(n) factors.

We will show how to use the Sumcheck protocol to construct a
doubly efficient interactive proof for every bounded depth computa-
tion.

Theorem 3. For any circuit C of depth D and size S (that is log-space
uniform) there exists a doubly efficient interactive proof such that We will explain what the log-space

uniformity condition is when we
describe the GKR protocol



the power of interactive proof systems 5

• The number of rounds is D · polylog(S).

• The communication complexity is D · polylog(S).

• The verifier’s runtime is O(n) + D · polylog(S) where n is the
input length (assuming the circuit is log-space uniform)

• The prover’s runtime is poly(S).

The doubly efficient interactive proof that achieves this theorem
is called the GKR protocol [1]. The main ingredient used in the GKR
protocol is the Sumcheck protocol!

References

[1] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum.
Delegating computation: interactive proofs for muggles. In Cyn-
thia Dwork, editor, Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 113–122. ACM, 2008.

[2] Adi Shamir. Ip=pspace. In 31st Annual Symposium on Foundations
of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990,
Volume I, pages 11–15. IEEE Computer Society, 1990.


	Outline
	Recap
	Sumcheck Protocol
	Analysis of the Sumcheck protocol
	Why do we care about the Sumcheck protocol?
	Doubly Efficient Interactive Proofs

