
Fully Homomorphic Encryption (part II)
Notes by Alexandra Henzinger

MIT - 6.5610
Lecture 9 (March 4, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Logistics

• Pset 3 published tomorrow

• Project check-in due on 3/8

• Exciting speaker (Eric Rescorla, former CTO of Mozilla) at
the security lunch on 3/7 at 12pm (in 32-D463)!

Outline

Today, we will cover:

• Review of the GSW levelled FHE scheme

– Recap of construction

– What depth circuits can this scheme evaluate?

• Bootstrapping GSW to support arbitrary-depth computations

• Stretch break

• FHE applications

• Open questions in FHE



fully homomorphic encryption (part ii) 2

Review: The GSW construction

We will begin by recapping the GSW construction, described in detail
in last week’s lecture notes. This construction gives a levelled FHE
scheme: it can only evaluate bounded-depth Boolean circuits on
encrypted data.

Specifically, given ciphertexts with B-bounded error, GSW encryp-
tion has the following error growth:

1. Homomorphic additions: after each add gate, the error roughly
doubles in magnitude (i.e., it goes from falling in the range [−B, . . . , B]
to falling in the range [−2B, . . . , 2B]).

2. Homomorphic multiplications: after each multiplication gate, Brakerski and Vaikuntanathan show
that the error growth incurred by
homomorphic multiplications can be
made even smaller when evaluating
branching programs.

the error is multiplied by roughly ℓ = (n + 1) · log q, on LWE
security parameter n and LWE modulus q. That is, the error
goes from falling in the range [−B, . . . , B] to falling in the range
[−ℓB, . . . , ℓB].

So, if we take the LWE error distribution χ to be B0-bounded (i.e., the
error in fresh ciphertexts falls in the range [−B0, . . . , B0]), then after
homomorphically evaluating a depth-d Boolean circuit on ciphertexts,
the error can at most fall in the range [−ℓd · B0, . . . , ℓd · B0].

We can still decrypt GSW ciphertexts as long as the (absolute value
of the) error is much smaller than q/4—this ensures that checking
whether a value is “big” or “small” as part of Dec lets us decrypt
correctly. As a result, we can still correctly decrypt ciphertexts after
evaluating any Boolean circuit of depth up to d, as long as

ℓd · B0 ≪ q/4.

Or, equivalently:

((n + 1) · log q)d · B0 ≪ q/4.

In other words, when working with a large enough modulus q,
the depth we can support is roughly d ≈ n0.99. So, given any pre-
determined circuit of depth d, we can pick our LWE parameters to be
large enough to let us homomorphically evaluate the circuit.

However, perhaps surprisingly, it is possible to do even better:
in the rest of this lecture, we will see an absolutely beautiful idea
to boost the GSW encryption scheme to compute arbitrary-depth
circuits! As a result, the size of our LWE parameters will not have
to grow with the complexity of the Boolean circuits that we want to
evaluate.



fully homomorphic encryption (part ii) 3

Bootstrapping GSW to support arbitrary-depth computations

In his original FHE construction, Gentry introduced a brilliant tech-
nique to refresh ciphertexts, which lets us go from a ciphertext en-
crypting a message µ with a lot of noise (as a result of performing
homomorphic computations) to a separate ciphertext encrypting µ

with only a little noise (namely, the baseline level of noise needed for
security) [1]. This technique is referred to as “bootstrapping.”

Bootstrapping intuition. At a high level, bootstrapping is based
on the following observation: by construction, the decryption al-
gorithm Dec(s, C) removes the noise from a ciphertext C, given the
corresponding secret-key vector s. So, if the server was given the
secret key s, the server could run Dec(s, C) on each ciphertext ma-
trix C to recover the underlying message µ, then the server could
build a new ciphertext C′ that encrypts µ with the baseline level of
noise by running Enc(s, µ), and finally the server could continue per-
forming homomorphic operations on ciphertext C′. Clearly though,
this would be insecure: we cannot let the server learn the secret-key
vector s, otherwise it could decrypt all of the ciphertexts (exactly as
we’ve suggested) and this would completely break security.

However, we can play a trick that is very similar to this approach:
namely, we can have the user send the server the encryption of its
secret-key vector. Then, the server can homomorphically—i.e., under
encryption—evaluate the Dec algorithm on a ciphertext encrypting
µ, as long as Dec has sufficiently low circuit complexity. The output
of this computation will be an encryption of the same message µ, but
with low error. We will now discuss this bootstrapping technique,
as well as the assumption that is needed to make it work (circular
security), in more detail.

Bootstrapping construction. To perform bootstrapping, we will
think of the decryption algorithm, Dec, as a Boolean circuit, CDec. Here, we are using the fact that we can

write any polynomial-time computa-
tion, such as Dec, as a Boolean circuit
that is also requires polynomial time to
evaluate.

This circuit takes as input two parameters: the secret-key vector
s ∈ Zn+1

q and a ciphertext matrix C ∈ Z
ℓ×(n+1)
q . Then, the circuit

outputs the bit µ ∈ {0, 1} encrypted by the ciphertext C.
Now, in the setting we are working in, the server knows the full

ciphertext C that it wants to bootstrap. So, we can think of this ci-
phertext C as hard-coded into the circuit CDec that we are trying to
evaluate. That is, we will denote CDec,C as the circuit CDec in which
the input ciphertext C has been fixed. In other words, the modified
circuit CDec,C now takes as input only the secret-key vector s ∈ Zn+1

q ,
and it spits out the message bit µ ∈ {0, 1} encrypted by the fixed
ciphertext C.

This new circuit CDec,C is exactly what we will homomorphically



fully homomorphic encryption (part ii) 4

evaluate. Namely, the user will include the encryption of each bit of its
secret-key vector, s ∈ Zn+1

q , as part of its evaluation key, ek. We can
write this evaluation key as: We are being slightly sloppy with

notation here and directly encrypting
Zq values. In reality, the evaluation key
here consists of the encryption of each
bit in the bit-decomposition of each
entry of s.

ek = (cts1 , . . . , ctsn) = (Enc(s, s1), . . . ,Enc(s, sn)) .

Then, given a ciphertext C that has the maximal amount of allowable
noise in it (such that it is still decryptable), the server will:

1. build the Boolean circuit CDec,C, which correspond to the decryp-
tion circuit with the ciphertext C hard-coded in it, and

2. homomorphically evaluate this decryption circuit to get the result-
ing ciphertext C′:

C′ ← Eval (CDec,C , cts1 , . . . , ctsn) .

Here, we observe two crucial properties:

• We designed the circuit CDec,C to output the message bit
µ ∈ {0, 1} encrypted in the ciphertext C. So, the new cipher-
text C′, which is the result of homomorphically evaluating
CDec,C , will then be an encryption of µ.

• The amount of noise contained in the new ciphertext C′

depends only on

1. the noise contained in the encryptions cts1 , . . . , ctsn given
as part of the evaluation key ek, and

2. the depth of the decryption circuit CDec,C.

So, since the encryptions given in the evaluation key ek are
fresh (in that they have the minimum amount of required
noise), the output ciphertext C′ can also have low noise!

As a result, the ciphertext C′ is an encryption of the same message as
the ciphertext C, but C′ is guaranteed to have low noise! This is ex-
actly what we set out to construct. However, there are two important
caveats that we need to verify to make this technique work:

1. Decryption circuit complexity. For bootstrapping to be useful,
the underlying levelled FHE scheme must be powerful enough to
homomorphically evaluate (a) the decryption circuit CDec,C and (b)
at least one extra addition or multiplication gate. In other words, we
need the decryption circuit to be “shallow” enough to fit into the
function class supported by our levelled FHE scheme. Concretely, if
the decryption circuit CDec,C has depth d, we need the levelled FHE
scheme to support computations of depth at least d + 1.

When this is the case, we can homomorphically evaluate any
arbitrary-depth boolean circuit as follows:



fully homomorphic encryption (part ii) 5

1. Homomorphic addition: we replace each “ADD” gate by a homo-
morphic addition (i.e., C ← Eval(“+′′, C1, C2) in the notation
of last lecture), followed by a homomorphic decryption (i.e.,
C′ ← Eval(CDec,C , ek)).

At the end of this procedure, we have a ciphertext C′ with noise
in the range [−ℓd · B0, · · · , ℓd · B0], where d is the depth of the
decryption circuit.

2. Homomorphic multiplication: we replace each “MUL” gate by a ho-
momorphic multiplication (i.e., C ← Eval(“×′′, C1, C2)), followed
by a homomorphic decryption (i.e., C′ ← Eval(CDec,C , ek)).

At the end of this procedure, we again have a ciphertext C′ with
noise in the range [−ℓd · B0, · · · , ℓd · B0], where d is the depth of the
decryption circuit.

By alternating computing on and refreshing the ciphertexts in this
way, the noise in our ciphertexts will never grow too large. No matter
the degree of our computation, we will always be able to decrypt.

In the case of GSW, the decryption circuit has depth O(log n).
(This is depth stems from the comparison operations required to
check whether each value is “big” or “small”.) As we saw, the lev-
elled version of GSW is powerful enough to support computations up
to depth n0.99. So we can indeed bootstrap!

2. Circular security. To preserve security, the server cannot learn
any information about the secret key. Intuitively, the way we are
achieving this is by encrypting the secret-key vector, under itself.
Proving that is secure requires the additional assumption that GSW
encryption is circular secure—that is, that publishing the ciphertexts
that encrypt each bit of the secret key under itself, i.e.,

ctsi = Enc(s, si) for i ∈ [n],

hides the secret key.
In general, we do not know how to show that GSW is circular

secure from just the LWE assumption. Building full FHE without the In fact, there exist semantically-secure
encryption schemes that are provably
not circular secure.

circular security assumption is still an open question and an active
area of research!

Applications of FHE

Now that we have constructed FHE, we will discuss three particular
applications that it lets us construct: There are many, many more applica-

tions of FHE. Coming up with a new
application might be a fun avenue for a
class project!

1. Private delegation. In private delegation, a user wants to outsource
the computation of some function to a powerful but untrusted
server, without revealing its input to the computation.



fully homomorphic encryption (part ii) 6

Some examples of this are: a user may want to query a LLM on a
sensitive prompt, without revealing her prompt. Or, a user may
want to outsource the storage of her emails to a cloud server and
to keep the contents of her emails hidden, while retaining the
ability to search over them.

2. Secure collaboration. In secure collaboration, multiple users want to
jointly evaluate a function on their hidden inputs, while revealing
nothing but the output of the function.

Some examples of this are: hospitals may want to collaborate to
train machine learning models, while keeping sensitive patient
data hidden. Or, banks may want to run an auction without re-
vealing (or learning) each bidder’s bid and each seller’s price.

3. Private database lookups. Private database lookups are a generaliza-
tion of private information retrieval (which we covered in lectures
5 and 6). In this setting, a user wants to make arbitrary queries to
a remote database, while hiding her queries. With FHE, the server
hosting the database can answer these queries under encryption.

These private database queries could take many forms: for ex-
ample, a user may want to make general SQL queries. Or, a user
may want to make a private query to a web search engine (e.g.,
Google), without revealing her query string.

Open questions in FHE

The GSW scheme that we saw in these last two lectures is an incredi-
bly powerful tool that can unlock an array of cryptographic applica-
tions. However, building and improving on know FHE constructions
is an active and exciting area of research in which many interesting
questions remain unanswered. Two such open questions are:

1. Can we build FHE from assumptions other than lattices?

In cryptography, it is always good to construct any given primitive
from a variety of assumptions—this gives us confidence that, even
if any one assumption turns out to be broken, our primitive still
exists. In the case of FHE, we (roughly) only know how to build
it from lattice-based assumptions (e.g., LWE, ring-LWE). Building
FHE from a number-theoretic assumption—for example, the hard-
ness of factoring (e.g., RSA) or the hardness of discrete log (e.g.,
DDH)—would be a big research result!

2. Can we make FHE concretely efficient and practical?



fully homomorphic encryption (part ii) 7

While the construction of FHE that we covered today is possible
in theory, it is still very far from concretely efficient in practice. In
large part, this is due to the computational costs of

• representing computations as Boolean circuits, and

• incurring O(poly(n)) (or even just O(polylog(n))) over-
head per gate.

The state-of-the-art in research today is that evaluating functions
with low multiplicative degree (e.g., degree 2 or 3) and high ad-
ditive degree can be concretely efficient. However, once we try to
evaluate circuits with high multiplicative degree, the LWE parame-
ters that we must use become large and computing on ciphertexts
(and, in particular, bootstrapping them) becomes very expensive.

While FHE isn’t used much in practice yet, building truly practical
FHE would have an enormous impact on the world!

References

[1] Craig Gentry. A fully homomorphic encryption scheme. Ph.D.
thesis, Stanford University, 2009.


	Outline
	Review: The GSW construction
	Bootstrapping GSW to support arbitrary-depth computations
	Applications of FHE
	Open questions in FHE

