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I tend to use

c≈ to denote computational
indistinguishability of two ensembles of
distributions. I say distribution ensembles
because to talk about computational
indistinguishability of distributions,
we must actually work with infinite
families of distributions parameterized
by the security parameter λ. So when

we write D0
c≈ D1, we really mean that

the ensembles D0 = {D0,λ}∞
λ=1 and

D1 = {D1,λ}∞
λ=1 are computationally

indistinguishable.
You can see why we prefer the short-

hand notation.

But first: a knock-knock joke.

Learning-with-errors (LWE) assumption

We saw Regev’s LWE assumption [2] a few lectures ago. To refresh
your memory, the LWE assumption, loosely speaking, asserts that it
is hard to solve noisy linear equations modulo integers of a certain
type.

The LWE assumption is a family of assumptions associated with
integral parameters n = n(λ), m = m(λ), q = q(λ) and an error
distribution χ = χ(λ) over Zq.

Definition 1. The LWEn,m,q,χ assumption asserts that

(A, As + e)
c≈ (A, U)

where A←R Zm×n
q s←R Zn

q , e← χm.
When χ is the discrete-Gaussian distri-
bution, appropriately parameterized,
we have the special consequence that
if there exists a p.p.t. adversary that
breaks LWEn,m,q,χ then one can use this
adversary to break worse-case lattice
problems (such as finding a good ap-
proximation to the shortest vector in a
lattice). We will not elaborate on this,
and for those who are interested, Vinod
Vaikuntanathan has fantastic lecture
notes on this topic here.

For the LWE assumption to be useful for building cryptosystems,
we need m � n log q. In theory, we typically let the error distribu-
tion χ be the “discrete Gaussian” distribution, where we restrict the
outputs to be in [−B, B], where −B = q− B.

As we will see, in practice, it is convenient to choose χ as some
other distribution. One surprise about LWE is that the assumption

https://people.csail.mit.edu/vinodv/CS294/lecturenotes.pdf
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is extremely robust: many many variants of LWE problem are essen-
tially as hard as the standard LWE problem.

For us, all we will use is that χ takes values in [−B, B] where B is a
small error parameter (significantly smaller than q).

Review: Symmetric Encryption Scheme from LWE

We review Regev’s symmetric-key encryption scheme, since we will
need it for the public-key version. I am going to write the decryp-
tion algorithm here slightly differently than we did last week. This
alternative formulation ends up being more convenient when we use
Regev encryption as a building block in more powerful cryptosys-
tems.

Construction. The message space is {0, 1}. The secret key is s ←R Zn
q .

To encrypt a bit b ∈ {0, 1}:

Enc(s, b) = (a, aᵀs + e + b · q
2
) ∈ Zn+1

q ,

where a←R Zn
q and e←R χ. To decrypt a ciphertext c ∈ Zn+1

q : For simplicity, I am assuming here that
q is even. If not, replace q/2 everywhere
with bq/2c.Dec(s, c) : output 0 iff |cᵀ · (−s|1)| ≤ q

4
.

Correctness holds because the expression inside the absolute-value
bars is: The notation (−s|1) just indicates that

we are concatenating the element “1”
onto the end of the vector s.(a, aᵀs + e + b(

q
2
))

ᵀ
· (−s|1) = −aᵀs + aᵀs + e + b(

q
2
)

= e + b(
q
2
).

Since e ≤ B � q/4, the decryption algorithm will always return the
bit b.

Linear homomorphism. Recall from the first PIR lecture that this en-
cryption scheme is linearly homomorphic. Namely, for every b1, b2, . . . , bm ∈
{0, 1} it holds that

Dec(s,Enc(s, b1) + Enc(s, b2) + · · ·+ Enc(s, bm)) = b1 ⊕ b2 ⊕ · · · bm.

The error grows a little with each homomorphic addition. Namely,
if the original error of each ciphertext had B-bounded error, the
ciphertext after m additions has (Bm)-bounded error. As long as
Bm� q/4, we maintain correctness.

Review: CPA-secure public-key encryption

Last time we defined the notion of a CPA-secure symmetric key
encryption and showed how to construct it from any PRF family. There is a stronger definition of secu-

rity, which is the “gold standard” for
security of encryption schemes. The
stronger notion is security against chosen
ciphertext attacks (or CCA security). In the
CCA-security game, the attacker may
ask the challenger for decryptions of
ciphertexts of its choice, in addition to
seeing encryptions of messages of its
choice.
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Definition 2. A public-key encryption scheme over a message
spaceM = {Mλ}λ∈N consists of three efficient (p.p.t.) algorithms
(Gen,Enc,Dec), where:

• Gen takes as input the security parameter 1λ (in unary) and
outputs a key pair (pk, sk).

• Enc takes as input a public key pk and a message m ∈ Mλ

and outputs a ciphertext Enc(pk, m).

• Dec takes as input a secret key sk and a ciphertext ct and
outputs a message m. Typically, Dec is deterministic.

The correctness guarantee is that for every λ ∈ N, for every m ∈ Mλ

and for every (sk, pk) that Gen(1λ) may output,

Pr[Dec(sk,Enc(pk, m)) = m] = 1,

where the probability is over (pk, sk) ← Gen(1λ) and over the ran-
domness used by Enc. Sometimes we relax the definition

of perfect completeness and allow a
negligible probability of error over
(pk, sk) ← Gen(1λ) and over the
randomness used by Enc.

Definition 3 (Semantic security for public-key encryption – “Weak”
security). A public-key encryption scheme (Gen,Enc,Dec) is said
to be semantically secure (i.e., CPA secure, i.e., secure against chosen-
plaintext attack) if for every λ ∈ N and every m0, m1 ∈ Mλ it holds Semantically security is the same as

CPA security, and different names are
used for the symmetric setting and the
public-key setting, though sometimes
CPA security is used for the public-key
setting as well.

that
(pk,Enc(pk, m0))

c≈ (pk,Enc(pk, m1)),

where the distributions are over (pk, sk) ← Gen(1λ) and over the
randomness of Enc.

Are we assuming here that the adversary is given only a single
ciphertext? No! Notice that in the public key setting ciphertexts can
be computed efficiently given pk, and pk is given in both distributions
above.

As we mentioned above, in practice we demand that our encryp-
tion schemes satisfy the stronger notion of security against adaptive As far as I know, the question of

whether it is possible to lift any CPA-
secure encryption scheme into a CCA-
secure without using random oracles is
still open.

chosen-ciphertext attacks (“CCA security”). There are generic ways
to “lift” a CPA-secure encryption system to a CCA-secure encryption
system, as long as you are fine using a cryptographic hash function
that you model as a random oracle.

Public-Key Encryption from LWE

The first public-key encryption schemes that most students learn are
ElGamal and RSA encryption. Computing discrete logs is enough to RSA was developed here at MIT by

Rivest, Shamir and Adleman. Ron
Rivest will give a guest lecture in our
class later this semester!

break ElGamal cryptosystem. Factoring integers is enough to break
the RSA cryptosystem. A large-enough quantum computer—but
still polynomially large—can compute discrete logs and can factor
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integers. So a quantum computer can break both of these encryption
schemes in polynomial time.

We will focus on constructions that are plausibly post-quantum
secure. Typically, breaking such constructions requires solving some
variant of the learning-with-errors (LWE) problem, which we saw
earlier in the course. Since LWE is a very different type of computa-
tional problem than discrete log or factoring, and since we have no
good algorithms for solving LWE on a quantum computer, we expect
these construction to withstand quantum attacks.

• Gen(1λ):

1. Let n = λ, q = poly(λ) and m = Θ(n · log q). Let χ be a A B-bounded distribution is just one
that takes on values in the range
{−B, . . . , B} ∈ Zq. As usual, we slightly
abuse notation and write −x ∈ Zq to
mean q− x ∈ Zq.

B-bounded distribution such that B ·m� q/4.

2. Generate s←R Zn
q , A←R Zm×n

q , and e← χm.

3. Output pk = (A, As + e) and sk = s.

Denote by B ∈ Zm×(n+1) the matrix consisting of A with the
vector As + e appended as an extra column. Thus, we can
think of pk = B.

Intuition. What is going on here? You can think of the public
key as containing m symmetric-key encryptions of the bit
“0”—one per row—all encrypted under secret key s.

Note that we can decrypt all of these m ciphertexts at once by
multiplying by (−s|1) on the right, just like running m copies
of the symmetric-key decryption routine:

B · (−s|1) = (A|As + e) · (s|1) = (As + e)−As = e.

• Enc(pk, b) chooses a random r←R {0, 1}m ⊆ Zm
q and outputs

rᵀB + b · (0, . . . , 0,
q
2
).

Intuition. Since we think of the public key B as containing
m symmetric-key encryptions of “0,” the public-key encryp-
tion algorithm here is just taking a random subset of these
m encryptions and “adding them up” using the homomor-
phic property of the encryption scheme. This gives us a new
symmetric-key encryption of “0.” The public-key encryption
algorithm then flips the sign of this encrypted message if the
bit b = 1 by adding q/2 to the encrypted value.

• Dec(sk, c) outputs “0” iff |cᵀ(−s|1)| ≤ q/4. Decryption here
works exactly as in the secret-key setting!

Correctness. The correctness of this public-key scheme follows di-
rectly from the correctness of the linearly homomorphic secret-key
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scheme. The output ciphertext here is the sum of at most m encryp-
tions of “0,” plus q/2 if the message bit is “1.”

If the error in each original ciphertext is B-bounded, then the
output of the Enc algorithm will be a ciphertext with (Bm)-bounded
error. As long as Bm� q/4, decryption will work.

Is this scheme secure?

Security follows from the LWE assumption on parameters (n, m, q, χ),
but proving this is requires a bit more work than in the symmetric
key setting.

To prove security we will argue that for every b ∈ {0, 1}, the
following ensembles of probability distributions are computationally
indistinguishable, Again the notation D0

c≈ D1 denotes
that two ensembles of probability
distributions are computationally
indistinguishable.

(pk,Enc(pk, b))
c≈ (pk, u), (1)

where (sk, pk) ← Gen(1λ) and u is uniform over Zn+1
q . Proving

Eq. (1) is enough to prove CPA security, since we can apply Eq. (1)
twice to show that for all messages m0, m1 ∈ M:

(pk,Enc(pk, m0))
c≈ (pk, u)

c≈ (pk,Enc(pk, m1))

If we let B denote the public key, and we let b = (0, 0, . . . , 0, q/2) ∈
Zn+1

q , we have Here, we use ≡ to denote that two
distribution ensembles are identical.

(pk,Enc(pk, b)) ≡ (B, rᵀB + b). (2)

The security argument works in two steps:

1. Replace the public key with a uniform random matrix. First, we appeal
to the LWE assumption to argue that the public key pk is compu-
tationally indistinguishable from being uniform in Z

m×(n+1)
q . So,

under the LWE assumption, we can replace the matrix B with a
uniform random matrix U ←R Z

m×(n+1)
q and no efficient algorithm

will be able to distinguish:

(B, rᵀB + b)
c≈ (U, rᵀU + b). (3)

2. Argue information-theoretically that the ciphertext is statistically close to
a uniform random vector. Our last task is to show that: The

s≈ notation indicates that two
distribution ensembles are statistically
close. If two distribution ensembles
are statistically close, then no efficient
algorithm can distinguish them. This
is an unconditional statement—it
requires no computational assumptions.
Distributions that are statistically close
are aaaaalmost identical, but not quite.

(U, rᵀU + b)
s≈ (U, v), (4)

for U←R Z
m×(n+1)
q and v←R Zm

q .

To prove Eq. (4), we appeal to a special case of the “Leftover Hash
Lemma,” which is used all over the place in cryptography. Look at
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m

·a
qu
+1

If m (n + 1) logg left
space is

exp bigger than

right one .

Figure 1: My attempt to explain the
Leftover Hash Lemma with a picture.

the left side of Eq. (4). The term rᵀB consists of a vector of (n + 1)
elements of Zq.

We will not prove the lemma here. One way to get some intuition:
If I give you (U, α = rᵀU), where U ←R Z

m×(n+1)
q and r ←R Zm

q , I’m See Regev’s 2005 paper for a clean
statement of the Leftover Hash Lemma
as needed here.

really just giving you a system of n + 1 linear equations, defined
by rᵀU = α with m � n + 1 unknowns (the values of r) modulo q.
As long as m� (n + 1) log q, for each possible value of α, there are
an exponential number of possible solutions r, all about equally
likely. So the value rᵀU cannot reveal much about r and in fact
is statistically close to uniform random, even given U. Then the
value rᵀU is essentially a one-time-pad encryption of b and that
gives Eq. (4).

The last step is to put Eq. (2), Eq. (3) and Eq. (4) together, which
gives the statement that we wanted to prove, Eq. (1).

Implementing lattice-based cryptography

Let us discuss a few implementation considerations with Regev’s
public-key encryption system. Practical lattice-based cryptosys-
tems at their core often just use a variant Regev’s encryption system,
though with many performance optimizations and tweaks. (Some of
these require stronger cryptographic assumptions than plain LWE.)
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Choosing parameters

In RSA, there is essentially only one parameter to pick: the length of
the modulus. In lattice-based cryptosystems, we have many more:

• n – the secret dimension,

• m – the number of LWE samples revealed,

• q – the modulus, and

• χ – the B-bounded error distribution.

The particular application imposes some restrictions on the rela-
tionship of these parameters to each other as well. For example, for
correctness in Regev public-key encryption, we need m > 2n log q
and also that Bm < q/4. Other applications have even more con-
straints. For public-key encryption, we can fix m = 2n log q, so we
just need to worry about (n, q, χ).

Often, we start by picking the modulus q to be something conve-
nient. The choices q = 216 or q = 232 are nice since mod-q operations
with these moduli are just native machine operations.

Now, to set n and χ, we have to understand, for a given choice of
(q, m, n, χ), what the running time of the best known LWE algorithm
is. We want this running time to be greater than 2128 or so. Unfortu-
nately, there is no clean closed-form expression for the running time In contrast, for discrete log on certain

elliptic-curve groups of order q, the best
attack runs in time roughly 2q/2. This
makes it easy to pick the group order.
(Picking the parameters of the curve, in
contrast, is very tricky business.)

of the best attack for a given set of parameters. Instead, to choose the
parameters, we typically resort to the “lattice estimator,” a script that
approximates the running time of the best lattice attack for a given
parameter set.

Increasing the secret dimension n makes LWE harder. For a
given secret dimension n, the “modulus-to-noise“ ratio q/stddev(χ)
roughly determines how easy or hard LWE is:

• When this ratio is close to one, χ adds a gigantic amount of
noise and LWE is relatively hard. In this case, we can set the
secret dimension n to be relatively small.

• When this ratio is very large, χ adds very little noise relative
to the modulus. In this case, we must set the secret dimen-
sion n to be relatively large—otherwise LWE is not hard
enough.

Packing more bits into each ciphertext

The basic Regev scheme we have seen encrypts a single bit into n + 1
Zq elements. Since n ≈ 210 and q ≈ 216, this is almost a 64,000×
overhead in bitlength. We can squeeze a little more juice out of Regev
encryption by jamming a few more bits into each ciphertext. In par-
ticular we can choose a plaintext modulus p > 2 and encrypt Zp

https://github.com/malb/lattice-estimator
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elements.
To do so, we encode b ∈ Zp as b(q/p). Then when we decrypt, we

round the answer to the nearest multiple of q/p. As long as the noise
has magnitude less than q/(2p), we will always decrypt correctly.

Even so, Regev still imposes a large overhead—at least 1000×,
typically.

Large keys

The public key in Regev’s scheme is a matrix of dimension roughly
m × n, where n is the secret dimension and m ≥ 2n log q. Taking
q = 216 is a common choice. Then if stdev(χ) = 16, we need roughly
n = 29 = 512 for 128-bit security and m = 2n log q = 210 · 24 = 214.

The public-key matrix is then roughly mn = 223 Zq elements, each
is two bytes each. So the public key is around 224 = 16 MB! Compare
this with the 32-byte public keys that standard discrete-log-based
cryptosystems use!

The standard trick here is to use a cryptographic hash func-
tion H(·, ·) in counter mode to generate the LWE matrix A from
a small λ-bit seed, rather than choosing A truly at random from
Zm×n

q . That is, on seed σ, we would generate the entries of A as
H(σ, 0), H(σ, 1), H(σ, 2), . . . and so on.

When using this Regev variant, the public key consists of a (1) a
λ-bit key for a pseudorandom function and (2) a vector in Zm

q . The
total size here is now more like 216 = 64 KB.

The catch is that, to prove security, we have to model the function
H as a random oracle. But that is typically good enough in practice.

Ring LWE: Faster computation and less communication

The last trick we will discuss solves two problems at once: it reduces
the encryption and decryption time by a factor of roughly n ≈ 1000.
It also reduces the ciphertext blowup by a factor of roughly n ≈ 1000.
Does it sound too good to be true? The major caveat is that we have
to make a stronger assumption than the LWE assumption to get this
performance boost: the Ring LWE assumption, of Lyubashevsky,
Peikert, and Regev [1].

Recall that the LWE assumption on parameters (n, m, q, χ) says
that:

(A, As + e)
c≈ (A, u) for

A←R Zm×n
q

s←R Zn
q

e←R χm

u←R Zm
q

.

Observe that A is a uniform random, and totally unstructured,
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matrix. For my simple brain, the easiest way to think about ring LWE
is that we replace the unstructured matrix A with a structured one. The more principled way to think about

ring LWE is that we are replacing the
Zq elements in LWE with polynomials
with coefficients in Zq taken modulo
some polynomial f (x). We then have a
ring of polynomials R = Zq[x]/ f (x).
We can now define the LWE problem
over R instead of over Zq. The assump-

tion is that a · s + e
c≈ u ∈ R, where

a, s, u ←R R, and e is a polynomial in R
with “small” coefficients.

In particular, for a vector a = (a1, a2, . . . , an) ∈ Zn
q , define the n× n

“negacyclic” matrix Nega(a) as:

Nega(a) :=



a1 a2 a3 · · · an

−an a1 a2 · · · an−1

−an−1 −an a1
. . . an−2

...
...

... · · ·
...

−a2 −a3 −a4 · · · a1


∈ Zn×n

q .

Two points about Nega(a) are:

1. this matrix has dimension n× n but only requires n Zq elements to
represent (i.e., the vector a), and

2. there is a near-linear-time matrix-vector multiplication algorithm This algorithm uses the Fast Fourier
Transform and requires only O(n log n)
operations in Zq.

for computing the product Nega(a) · v, provided that the modu-
lus q has some special structure.

Now we can construct the ANega matrix for Regev’s public-key
encryption scheme as:

ANega =


Nega(a1)

Nega(a2)

· · ·
Nega(a`)

 ∈ Z`n×n
q .

Then we have m = `n.
The most expensive step in computing a Regev encryption is the

product rᵀA, which we can do in time now O(m log n) � O(mn).
The n-to-log n reduction gives a n

log n× speedup, or maybe 100× for
realistic parameter settings.

But is it secure? The question now is whether the ring LWE prob-
lem (or the LWE problem with a structured A matrix) is still hard.
Ring LWE is not harder than LWE, but it could potentially be much
easier. For instance, we know that if you choose A to be a cyclic ma-
trix instead of a negacyclic one, ring LWE is easy. What exact sort
of structure you impose on the matrix has a major impact on the
hardness of the resulting LWE problem.

At the same time, we know of no better attacks on ring LWE than
just attacking LWE itself. Given the enormous performance benefits
of using ring LWE, many lattice-based cryptosystems rely on it in
spite of the potential of better-than-LWE attacks in the ring setting.
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