
PIR Extensions
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 6 (February 21, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Logistics

• Post project ideas on Piazza by Friday

Outline

• Review: Private information retrieval

• Review: Square-root PIR scheme.

• Handling longer database records.

• Stretch break

• Reducing communication: The full K-O scheme

pir extensions 2

Review: Private information retrieval

Recall the problem of private information retrieval that Alexandra
defined in the last lecture:

• A server that holds an N-bit database, D ∈ {0, 1}N ,

• a user that holds an index i ∈ {1, . . . , N}, and

• the user’s goal is to learn the i-th bit of the database, Di,
without revealing i to the server.

Formally, a private information retrieval (PIR) is a triple of random-
ized algorithms (Query,Answer,Reconstruct) that satisfy the following
three properties:

1. Correctness: for any index i ∈ {1, . . . , N} and any database D ∈
{0, 1}N ,

Pr

[
Reconstruct(st, ans, i) = Di :

(st, qu)← Query(1λ, i)
ans← Answer(D, qu)

]
≥ 1−negl(λ).

That is, the user will correctly recover Di with high probability.

2. Security: for any two indices i, j ∈ {1, . . . , N},{
qu : (_, qu)← Query(1λ, i)

}
≈
{
qu : (_, qu)← Query(1λ, j)

}
.

That is, the server’s view looks computationally indistinguishable
whether the user is making a query for i or making a query for
j. This is very similar to the semantic-security definition of an
encryption scheme. As we discussed, CPA security is

a stronger definition of secret-key
encryption since it allows the adversary
to encryptions of many messages of its
choice under the same key. Why is this
one-time definition good enough?

3. Succinctness: The total bit-length of the outputs of Query(1λ, ·)
and Answer(·, ·) is less than N. (Without succinctness, the client
might as well download the entire database.)

A classic PIR scheme: Square-root PIR

We will start by discussing a classic PIR scheme due to Kushilevitz
and Ostrovsky (1997). It uses a symmetric-key additively homomor-
phic encryption scheme (Enc,Dec) with keyspace K and message
space Z2.

The server will represent its N-bit database as a matrix, D ∈
Z
√

N×
√

N
2 . The user will represent its query as an index (i, j) ∈

[
√

N]× [
√

N] into this matrix.
The protocol proceeds as follows:

• Query
(
1λ, (i, j)

)
:

– Build the unit vector uj ∈ Z
√

N
2 that consists of all

“0”s except for a single “1” at position j.

pir extensions 3

– Sample a fresh encryption key k←R K.

– Compute the query vector qu ← Enc(k, uj). (Note:
Here we encrypt each element of the query vector
component-wise.)

– Set st← k and output (st, qu).

• Answer(D, qu):

– Output the answer vector ans← D · qu. (Here we use
the fact that computing a matrix-vector product with
a plaintext matrix and a component-wise encrypted
vector just requires addition of encrypted values.)

• Reconstruct(st, ans, (i, j)) :

– Recover the encryption key k← st.

– Decrypt the answer vector as v ← Dec(k, ans), where

v ∈ Z
√

N
2 .

– Output the i-th entry of v.

This scheme indeed meets all the requirements of a PIR protocol:

1. Correctness: If the underlying encryption scheme (Enc,Dec) is
linearly homomorphic, we have that:

ans = D · Enc(k, uj)

= Enc(k, D · uj︸ ︷︷ ︸
mod 2

).

By construction, the vector D · uj here corresponds exactly to the j-
th column of database matrix D. So, decrypting the answer vector
ans and outputting its i-th entry will exactly recover the element at
position (i, j) in the database D.

2. Security: PIR security follows from the CPA-security of the under-
lying encryption scheme (Enc,Dec).

3. Succinctness: The output of Query here consists of
√

N ciphertexts
(one per element in the encrypted vector). Similarly, the output of
Answer consists of

√
N ciphertexts. So, the total communication

between the user and the server here is much smaller than N.

Trading upload for download

Before we leave this PIR scheme, I wanted to mention one other
interesting property of it: We can generalize the scheme to have the
database be a matrix of dimension α × N

α . Then client uploads an

pir extensions 4

N/α-element row vector (of ciphertexts) and receives in response a
α-element column vector (of ciphertexts).

This observation lets us trade off upload for download: If, for
whatever reason, we would rather increase the size of the client up-
load at the cost of download, the same PIR scheme with different
parameters can have upload N2/3 and download N1/3 ciphertexts
(for α = N1/3). Or upload N/100 and download 100 ciphertexts, etc.

This will be useful in a moment.

pir extensions 5

Note: All of the extensions we will discuss today make only black-
box use of the underlying PIR scheme. That means that they will
work with whatever crazy PIR scheme you come up with from
whichever computational assumption (factoring, discrete-log, etc.).

Longer database records

We described the PIR scheme with respect to a database of N one-bit
records. A more realistic setting involves a database of N records,
each of ` bits. How do we construct a PIR scheme in this case?

Observe that the square-root PIR scheme we have already seen
allows the client to fetch an entire column of the database in one go.
So if ` <

√
N that scheme unmodified will do the trick.

For other PIR schemes that have other communication costs, there
is another more general trick that we can use.

The most naïve approach for handling databases with `-bit records
would be to jam all of the records into a single database of N` bits.
Then, the client makes ` queries to this database to fetch bit of its
desired record, one at a time.

Say that the original PIR scheme has upload cost U(N) bits and
download cost D(N) bits. Let’s write U(N, `) and D(N, `) to denote
the upload/download cost of a PIR scheme with N `-bit records.
Then this new scheme has:

• Upload: U(N, `) = ` ·U(N)

• Download D(N, `) = ` · D(N)

We can do better! Imagine “slicing” the database into ` databases,
each N bits long. The first database D1 contains the first bit of all N
database records. The second database D2 contains the second bit of
all N database records. And so on. . .

To make a query for the ith record, the client queries the ith bit of
the first database Di using the PIR scheme for an N-bit database.

The server then answer’s the client’s query with respect to each of the
` databases. So the client makes one query and receives ` responses.

The communication cost is now:

• Upload: U(N, `) = U(N).

• Download: D(N, `) = ` · D(N).

This saves a factor of ` on the upload cost. In many applications
`� 1024, so this savings is non-trivial.

pir extensions 6

Rebalancing to handle longer records.

We can combine our trick of trading upload for download in the
square-root PIR scheme with this trick of handling longer records.

In particular, for every α, we have a PIR scheme for `-bit records
with:

• Upload: U(N, `) = N/α.

• Download: D(N, `) = ` · α.

To minimize communication, we can choose the parameter α to bal-
ance the upload and download:

N/α = ` · α
N = ` · α2

N/` = α2

√
N/` = α

• Upload: U(N, `) =
√
`N.

• Download: D(N, `) =
√
`N.

What it means in practice. Say that your database consists of 16 mil-
lion articles (N = 224), each of 2KB= 211 in length. If you use certain
encryption schemes (e.g., Paillier) you can jam 256 bytes of data into
512 bytes of ciphertext, so the effective length of each database record
is ` = 4 ciphertexts worth.

The upload and download cost of this PIR scheme will be
√
`N =√

22 · 224 = 213 ciphertexts in either direction. This is roughly 4MB—
not bad for a database of 32 GB in size!

Things I will not talk about

There are two neat tricks that I want to mention but not discuss in
depth:

• Batch PIR: It is possible to fetch a batch of B records us-
ing PIR at almost the server-side cost of fetching a single
record. (The naïve strategy of running the PIR scheme B
times gives server running time NB. This approach gets time
O(N log N), essentially independent of the batch size B.

• PIR by keywords: You can build a PIR scheme that supports
key-value lookups from any standard PIR scheme. The basic
idea is that and data structure you can implement in RAM,
you can implement in PIR; just replace each RAM lookup
with a PIR query.

pir extensions 7

PIR with smaller communication

The PIR scheme we have seen so far has a communication cost of
roughly

√
N bits. One surprise, again due to Kushilevitz and Ostro-

vsky, is that we can drive down the communication cost of PIR to
something much smaller—even subpolynomial in N in some cases.

query 0 0 100 8

I
-

↳if
#

-

-

-answer

T

query 2

quary.o
pos ->.

willd - -

like
answer

-

N">

Figure 1: The square-root PIR scheme.

query 0 0 100 8

I
-

↳if
#

-

-

-answer

T

query 2

quary.o
pos ->.

willd - -

like
answer

-

N">

Figure 2: The cube-root PIR scheme.

Intuition. One way to think about the KO PIR scheme is as a gener-
alization of the square-root scheme we saw so far.

In the square-root scheme, we represent database as a two-dimensional
array (i.e., a matrix). The client sends up a vector of size roughly
equal to the length one side of this array. The client receives a vector
of length roughly equal to the other side of this array.

But why stop at two dimensions? We can go to three!

pir extensions 8

We can represent the database as a three-dimensional array (i.e., a
cube/tensor) where each side has length N1/3. The client sends up
two vectors of ciphertexts, where the length of each is the length of
one side of the cube. The client

Background. First, let’s recall what we know about PIR so far:

• For `-bit records:

U(N, `) = U(N), and (1)

D(N, `) = ` · D(N). (2)

• From our square-root PIR scheme rebalanced to make the
upload very large and download very small, we have a PIR
scheme that satisfies:

U(N) = N · |ct| , and

D(N) = |ct| ,

where |ct| denotes the size of a ciphertext for our additively
homomorphic encryption scheme.

• Main scheme. Putting the PIR ideas from the prior two bul-
lets together, we get a PIR scheme with upload

U(N, `) = N · |ct| , and (3)

D(N, `) = ` · |ct| , (4)

• Trivial scheme. There’s also the trivial PIR scheme in which
the client just downloads the entire database. This has:

U(N) = 0, and

D(N) = N.

Now, the very neat idea of Kushilevitz and Ostrovsky is to show
that you can construct a PIR scheme on an N-record database by
invoking a PIR scheme on an N/2-record database. With a careful
recursive construction, they show that this can reduce the communi-
cation cost by a lot:

Theorem 1 (KO97). Assume there exists a linearly homomorphic encryp-
tion scheme. Then for every constant ε > 0, there is a PIR scheme that
has communication cost O(Nε · poly(λ)), on database size N and security
parameter λ.

Usually I just try to describe the high-level idea of the KO con-
struction without going into details. This year, I am going to attempt
to give you the details. My hope is to convince you that what you
already know about PIR, plus some cleverness, is enough to construct There are other state-of-the-art PIR

schemes that use fully homomorphic
encryption (next week). But if you want
to build PIR from additively/linearly
homomorphic encryption, this K-O
scheme is the best we have.

a state-of-the-art PIR scheme.

pir extensions 9

N one-bit 2xDBs of
records

N/2 one bit records

Di Diz One DB
of a answer - bit records

encode↑ 7 - Answerlq ,

D
il3- De

-

~Answerls, Di)-
->Answer (9-P2)

7I S

I-
A

query q-· querg 92 answer client
Figure 3: My poor drawing of one step
of the K-O recursive PIR scheme with
α = 2.Construction. I will describe the construction in words and pictures

and then go through the analysis with a bit more precision.
The way the construction works, on an N-bit database, is as fol-

lows:

1. The client and server view the N-bit database as two N/2-record
databases.

2. The client sends one query to the server for its desired index into
the N/2-bit database.

3. The server answers the client’s query with respect to each database.
Now the server has two PIR answers to send to the client. The
server does NOT send these to the client.

4. Instead, the client and server view these two answers as a new
two-record database.

5. The client uses the main PIR scheme (Eqs. (3) and (4)) to fetch one
of these two records. This requires the client to send a second PIR
query to the server.

Notice that the client sends two PIR queries to the server: one for
the N/2-bit and one for a two-record database.

pir extensions 10

A generalization, which turns out to be important, is to divide the
database into α chunks, each of size N/α. The basic scheme takes
α = 2, but we may want to go farther.

Analysis. Now let us figure out what the communication cost of this
scheme looks like when we take α to be arbitrary. First, the upload.
There is one query to a database of size N/α, where each record
has ` bits. There is a second query to a database of α records, where
each record is the answer to a PIR query to the (N/α)-sized database.
Putting this into symbols, we have:

U(N, `) = U
(

N
α

, `
)
+ U(α, D

(
N
α

, `
)

︸ ︷︷ ︸
size of PIR answers

).

= U
(

N
α

)
+ α |ct| ,

where the second line comes from applying Eq. (1) to both the re-
cursive N

α -record scheme and using the “main” PIR scheme (Eqs. (3)
and (4)) to the α-record PIR schemes.

And now, the download. The client downloads one PIR answer
from a database of α records. Each entry in this database is itself the
answer to a PIR query to a database of N/α records. Mathematically,
we have:

D(N, `) = D
(

α, D
(

N
α

, `
)

︸ ︷︷ ︸
size of PIR answers

)

= |ct| · D
(

N
α

, `
)

.

Here, the second line comes from plugging in the main PIR scheme
for the two-record PIR scheme.

If our original database has ` = 1-bit records, we now have:

D(N) = |ct| · D
(

N
α

)
.

So now we have pretty clean recursive expressions for both the up-
load and download costs.

DO YOU WANT MORE RECURSION??? Yes. The answer is always
yes. Except when it’s no. But it’s usually yes.

pir extensions 11

More recursion. If we continue this recursive process for k steps,
what we get is:

U(N) = U
(

N
αk

)
+ αk · |ct|

D(N) = |ct|k · D
(

N
αk

)
.

Now if we plug in the trivial PIR scheme (download the entire
database) at the bottom of the recrusion (i.e., for N/2k-size database),
we get:

U(N) = αk · |ct|

D(N) = |ct|k
(

N
αk

)
.

Recognizing an old friend. If we take α =
√

N and k = 1, we actually
get back exactly the square-root PIR scheme! There, we represented
the database as a

√
N by

√
N matrix.

As k increases, you can think of this scheme as representing the
database as an object of higher and higher dimensions. So for k = 2,
we treat the database as a cube with side length N1/3, for k = 3
we have some sort of higher-dimensional cube thing, and so on.
The parameter α is essentially telling us what the side length of the
cube/hypercube is.

The client uploads one vector of ciphertexts to the server for each
side of the cube.

Setting the parameters. We can plug in whatever values for k and α

we want and see what happens to the upload and download. For
instance, take α = N1/100 and k = 100.

We then have

U(N) = 100 · N1/100 |ct|

D(N) = |ct|100 .

In a theoretical sense, this gives a pretty good PIR scheme! The up-
load is roughly N1/100—much much much smaller than the square-
root N1/2 scheme we saw before.

The download is |ct|100 which is some polynomial that is indepen-
dent of the database size. So the total communication is N1/100 ·poly(λ).

The problem, of course, is that the |ct|100 download cost is galactic
in practice—it’s polynomial in the security parameter, but it’s an
absurd polynomial.

When people implement this scheme, they typically take some-
thing like α = N1/3 and k = 2, to get a scheme that’s just slightly
better in communication than the square-root scheme.

pir extensions 12

There are lots of fancy optimizations to this basic scheme that I
will not have time to discuss. But just know that you can do a little
better than what I have shown here.

We have many constructions of better-
than-KO PIR schemes from other
assumptions. As far as I know, KO
is the best scheme that makes black-
box use of linearly homomorphic
encryption.

Question. Is there a PIR scheme that makes black-box use of a linearly
homomorphic encryption scheme and that has communication polylog(N)

on database size N?

As we will see next week, lattice-based crypto can give us schemes
with extremely small communication: something like log(N) +

poly(λ). Since it takes log N bits to specify which bit of the database
you’re interested in, this cost is just about as low as you can hope to
go.

References

	Outline
	Review: Private information retrieval
	A classic PIR scheme: Square-root PIR
	Trading upload for download
	Longer database records
	Rebalancing to handle longer records.
	Things I will not talk about
	PIR with smaller communication

