
Linearly Homomorphic Encryption and
Private Information Retrieval
Notes by Alexandra Henzinger

MIT - 6.5610
Lecture 5 (February 20, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Logistics

• Pset 2 out today (due 3/1)

Outline

• Review: secret-key encryption from LWE

• Linearly homomorphic encryption

• Private information retrieval (PIR)

– Stretch break

– Square-root PIR scheme

– Fast PIR from LWE

In the last lecture, we defined the learning-with-errors assumption
(LWE) and saw how to use it to construct a secret-key encryption
scheme. In this lecture, we will discuss a useful property of the LWE-
based encryption scheme—namely, that it is linearly homomorphic—
and see how to use it to build schemes for private information retrieval.

Review: secret-key encryption from LWE

In the last lecture, Yael showed how to build secret-key encryption
from LWE [6]. We will begin by reviewing this construction, but
slightly generalizing the notation: namely, we will encrypt vectors of
messages, and our ciphertexts will be matrices.

As we saw last time, given parameters (m, n, q, χ), the LWE as-
sumption states that the following distributions are indistinguishable



linearly homomorphic encryption and private information retrieval 2

(to any computationally-bounded algorithm):

 A

 ,

 A

×
s

+

e




≈



 A

 ,

u




,

where A is a random matrix in Zm×n
q , s is a random vector in Zn

q , e is
a random vector sampled from the (small) error distribution χm, and
u is a random vector in Zm

q .
Then, to encrypt any message vector v ∈ Zm

2 , we can proceed as
follows:

• We sample the secret key to be a random vector s ∈ Zn
q .

• Enc
(

v ∈ Zm
2 , s ∈ Zn

q

)
→ ct ∈ Zm×n

q ×Zm
q :

– Sample a random matrix A ∈ Zm×n
q .

– Sample a random error vector e ∈ Zm
q , where each

entry is sampled from the error distribution χ.

– Output (A, A · s + e + ⌊q/2⌋ · v).

• Dec
(
(A, b) ∈ Zm×n

q ×Zm
q , s ∈ Zn

q

)
→ v ∈ Zm

2 :

– Compute c = b−A · s ∈ Zm
q .

– Round each entry of c to the nearest multiple of
⌊q/2⌋, divide by ⌊q/2⌋, and output the result.

Effectively, the Enc function here is “padding” the message vec-
tor with the result of (A · s + e), which the LWE assumption tells
us looks uniformly random to any computationally-bounded algo-
rithm. Then, the Dec function is subtracting out a large portion of the
pad (namely, the A · s component), and finally removing the remain-
ing “small” error with the following check: for each location in the
resulting vector,

• if it is “close” to ⌊q/2⌋, output that the message was “1”.

• if it is “close” to 0, output that the message was “0”.

Decryption here is going to recover the correct message, as long
as the error sampled from the distribution χ is small enough. For
example, if we take χ to be the distribution that outputs a uniformly
random value in the range [−B, . . . , B], then decryption will always
succeed as long as B < q/4.

Linearly homomorphic encryption

As Henry mentioned in the first class, one of the goals of cryptogra-
phy is to compute on encrypted data. It turns out that our encryption



linearly homomorphic encryption and private information retrieval 3

scheme from LWE allows for a limited version of this: we can com-
pute linear functions (i.e., additions) directly on encrypted data.

Specifically, an encryption scheme Enc is linearly homomorphic if, for
any secret key k and any two messages m0, m1, it holds that:

Enc(k, m0) + Enc(k, m1) = Enc(k, m0 + m1).

The secret-key encryption scheme from LWE meets this property.
That is, for any secret key s ∈ Zn

q and any two message vectors
v0, v1 ∈ Zm

2 , we have:

Enc(v0, s) + Enc(v1, s)

= (A0, A0 · s + e0 + ⌊q/2⌋ · v0) + (A1, A1 · s + e1 + ⌊q/2⌋ · v1)

= (A0 + A1, A0 · s + e0 + ⌊q/2⌋ · v0 + A1 · s + e1 + ⌊q/2⌋ · v1)

= (A0 + A1, (A0 + A1) · s + (e0 + e1) + ⌊q/2⌋ · (v0 + v1))

≈

A0 + A1︸ ︷︷ ︸
Anew

, (A0 + A1)︸ ︷︷ ︸
Anew

·s + (e0 + e1)︸ ︷︷ ︸
enew

+ ⌊q/2⌋ · (v0 ⊕ v1)︸ ︷︷ ︸
vnew


In other words, the output of Enc(v0, s) + Enc(v1, s) corresponds to
a fresh ciphertext encrypting the new message (v0 ⊕ v1). There are
only two slight caveats here:

1. the new error component is (e0 + e1), i.e., it corresponds to the
sum of two samples from the error distribution χm.

2. if q is odd, it only approximately holds that

⌊q/2⌋ · (v0 + v1) ≈ ⌊q/2⌋ · (v0 ⊕ v1) mod q,

since 2 · ⌊q/2⌋ ∈ {−2,−1, 0} mod q.

These two differences only affect the lowest-order bits of our cipher-
texts. As a result, we can handle both of these issues by simply set-
ting our parameters such that decryption succeeds with high prob-
ability, even with a slightly larger error distribution. For example,
decryption will always succeed if we set 2B + 2 < q/4. More broadly,
we can set our parameters suitably to allow for any (polynomial)
number of homomorphic additions to be performed on these LWE
ciphertexts.

This linear homomorphism turns out to be extremely useful in build-
ing cryptosystems that perform some (restricted) computations on
encrypted data—for example, aggregating encrypted votes. In the
remainder of this lecture, we will see how to use it to build private
information retrieval.



linearly homomorphic encryption and private information retrieval 4

Private information retrieval

Today, when we query a remote database, the server that hosts the
database learns our query. In many cases, this leaks personal infor-
mation about us: for example, WebMD learns our medical condi-
tions, AirBnB learns our travel plans, and Google learns our search
queries. In an ideal world, we would like to query remote databases
privately—that is, without revealing what we are searching for. We
can achieve this type of functionality using cryptography, and in
particular linearly homomorphic encryption.

Specifically, we will restrict our attention to the following simpli-
fied problem statement. Say we have:

• a server that holds an N-bit database, D ∈ ZN
2 ,

• a user that holds an index i ∈ {0, 1, . . . , N − 1}, and

• our user’s goal is to learn the i-th bit of the database, Di,
without revealing i to the server.

To solve this problem, we define a private information retrieval (PIR)
scheme to be a triple of randomized algorithms (Query,Answer,Reconstruct)
that meet the following three properties [2]:

1. Correctness: for any index i ∈ {0, 1, . . . , N − 1}, any database
D ∈ ZN

2 , and any security parameter n,

Pr

[
Reconstruct(ans, st) = Di :

(qu, st)← Query(1n, i)
ans← Answer(D, qu)

]
≥ 1−negl(n).

That is, the user will correctly recover Di with high probability.

2. Security: for any two indices i, j ∈ {0, 1, . . . , N − 1},

{qu : (qu, _)← Query(1n, i)} ≈ {qu : (qu, _)← Query(1n, j)} .

That is, the server’s view looks computationally indistinguishable
whether the user is making a query for i or making a query for j.

3. Succinctness: the total bit-length of the client’s query (output by This requirement is needed to rule out
trivial PIR schemes where the user just
downloads the whole database from the
server.

Query(1n, ·)) and the server’s answer (output by Answer(D, ·)) is
less than N. This ensures that the total number of bits communi-
cated between the user and the server is smaller than N.

Many beautiful lines of work have showed how to construct PIR
with communication that scales only polylogarithmically with the
database size, N, from an array of cryptographic assumptions. In this
class, we will see how to construct non-trivial PIR with communica-
tion complexity O(

√
N) from any linearly homomorphic encryption

scheme. Then, we will discuss how to make this PIR scheme con-
cretely efficient using the LWE assumption.



linearly homomorphic encryption and private information retrieval 5

Why care? At first glance, it may seem like the PIR problem state-
ment is very contrived. However, it turns out that, if we can build
efficient protocols for this problem, we can then directly apply them
to solve many more natural and more complex tasks: for example,
private reads from a database with arbitrary-length records, and
private lookups to a key-value store by key (rather than by index).

Server work in PIR. While modern PIR has reasonably small com-
munication, a major bottleneck is the server-side computation re-
quired to answer PIR queries. In both of the PIR schemes we will
see, the server’s work is linear in the database size N—essentially,
the server needs to touch every bit in the database to answer a query.
This turns out to be inherent [1]: if the server didn’t touch any one
location in the database, it would learn that the user was not reading
that entry. An exciting line of work on PIR has aimed to find ways to
circumvent this lower bound: e.g., by preprocessing the computation,
or by amortizing it across many queries or many clients.

A classic PIR scheme: Square-root PIR

We will start by discussing a classic PIR scheme due to Kushilevitz
and Ostrovsky [4]. In this scheme, the key idea is that our server

will represent its N-bit database as a matrix, D ∈ Z
√

N×
√

N
2 . Now,

assume that the user wants to read the database bit at location (i, j) ∈
[
√

N] × [
√

N]. Given a linearly-homomorphic encryption scheme
(Gen,Enc,Dec), the protocol proceeds as follows:

• Query (1n, (i, j)) :

– Build the unit vector uj ∈ Z
√

N
2 that consists of all

“0”s except for a single “1” at position j.

– Sample a secret key sk← Gen(1n).

– Output the query vector qu← Enc(sk, uj), along with
the client-held state st← (sk, i).

• Answer(D, qu):

– Output the answer vector ans← D · qu.

• Reconstruct(ans, st) :

– Parse the client-held state st as (sk, i).

– Decrypt the answer vector as v← Dec(sk, ans), where

v ∈ Z
√

N
2 .

– Output the i-th entry of v.

This scheme indeed meets all the requirements of a PIR protocol:



linearly homomorphic encryption and private information retrieval 6

1. Correctness: If the underlying encryption scheme (Gen,Enc,Dec)
is linearly homomorphic, we have that:

ans = D ·Query (1n, (i, j))

= D · Enc(sk, uj)

= Enc(sk, D · uj︸ ︷︷ ︸
mod 2

).

By construction, the vector D · uj here corresponds exactly to the j-
th column of database matrix D. So, decrypting the answer vector
ans and outputting its i-th entry will exactly recover the element at
position (i, j) in the database D.

2. Security: PIR security follows from the CPA-security of the under-
lying encryption scheme (Gen,Enc,Dec).

3. Succinctness: The output of Query here consists of
√

N ciphertexts
(one per element in the encrypted vector). Similarly, the output of
Answer consists of

√
N ciphertexts. So, the total communication

between the user and the server here is much smaller than N.

Fast PIR from LWE

To make this square-root PIR scheme practical, we need to ensure
that both its communication cost and the server-side computation
cost are reasonable. One approach to doing so is to instantiate it
with lattice-based cryptography, and specifically with the secret-key
encryption scheme from LWE that we saw at the start of this lecture.

When we do so naïvely, we arrive at the following PIR protocol Here, we will rely on the LWE assump-
tion with parameter m ≥

√
N.between a server that holds a database matrix D ∈ Z

√
N×
√

N
2 and a

user that wants to read the bit at location (i, j) ∈ [
√

N]× [
√

N]:

• Query (1n, (i, j))→ (qu ∈ Z
√

N×n
q ×Z

√
N

q , st ∈ Zn
q × [
√

N]) :

– Build the unit vector uj ∈ Z
√

N
2 that consists of all

“0”s except for a single “1” at position j.

– Sample a random matrix A←R Z
√

N×n
q .

– Sample a random secret key vector s←R Zn
q .

– Sample a random error vector e←R χ
√

N .

– Output the query qu ← (A, A · a + e + ⌊q/2⌋ · uj),
along with the client-held state st← (s, i).

• Answer(D, qu)→ ans ∈ Z
√

N×n
q ×Z

√
N

q :

– Parse the query qu as (A, b).

– Output the answer ans← (D ·A, D · b).



linearly homomorphic encryption and private information retrieval 7

• Reconstruct(ans, st)→ b ∈ {0, 1} :

– Parse the client-held state st as (s, i).

– Parse the answer ans as (H, c).

– Compute v = c−H · s ∈ Z
√

N
q .

– Round the i-th entry of v to the nearest multiple of
⌊q/2⌋, divide it by ⌊q/2⌋, and output the result.

This PIR scheme works (in the sense that it is correct, secure, and In practice, we need to take the lattice
dimension n ≈ 1024 and the modulus
q ≈ 216, so the total communication
to make a private query to an N-bit
database would be roughly 104 ·

√
N

bits.

succinct), but it is far from concretely efficient because of the over-
head of shipping around and computing on the large A-matrices,
whose size scales with the lattice dimension n. Fortunately though,
we can do much better by taking advantage of three simple yet effec-
tive optimizations [3]:

1. LWE is still secure, even if the same A-matrix is reused in polyno-
mially many problem instances, assuming we use a random and Intuitively speaking, this is the case

because the A-matrix is revealed in the
clear, so the server could “simulate”
arbitrarily many LWE samples with
the same A (but different s and e) in its
head. This statement can be formalized
via a polynomial-time reduction.

independently generated secret vector s and error vector e each
time [5]. As a result, we can reuse the same A-matrix in our PIR
scheme to build polynomially many PIR queries—even by different
users.

In particular, we will now think of the A-matrix as a public param-
eter of the PIR scheme, known to all of the users and to the server.
(In practice, A may be generated using a PRG applied to short,
public seed.) With this optimization, we save a large amount of
communication, because the A-matrix no longer needs to be sent
from the users to the server.

2. Since the A-matrix is known in advance, the server can now com-
pute the result of H ← D · A once, ahead of time, and store it.
This saves a great deal of computation because the server can now
simply send back the precomputed H to answer each query, rather
than computing it each time.

3. The users can also prefetch the value of H ← D ·A once, ahead of
time. One way to think of H here is as a “hint” about the database
contents. This greatly shrinks the overall scheme’s per-query
download. In particular, both the upload and the per-query down-
load are now independent of the lattice dimension, n.

Taken together, these optimizations result in a PIR scheme that is
(reasonably) efficient. When q = 216, to make a PIR query, the user To see an example of (a slight variant

of) this scheme in action, check out:
https://playground.blyss.dev/

passwords.

uploads log q
√

N ≈ 16
√

N bits to the server. To answer the query, the
server performs one 16-bit addition and one 16-bit multiplication per
bit of the database (to compute D · b). Finally, the server sends back
log q
√

N ≈ 16
√

N bits to the user.

https://playground.blyss.dev/passwords
https://playground.blyss.dev/passwords


linearly homomorphic encryption and private information retrieval 8

References

[1] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers’
computation in private information retrieval: PIR with prepro-
cessing. J. Cryptol., 2004.

[2] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Su-
dan. Private information retrieval. In FOCS, 1995.

[3] Alexandra Henzinger, Matthew M. Hong, Henry Corrigan-Gibbs,
Sarah Meiklejohn, and Vinod Vaikuntanathan. One server for the
price of two: Simple and fast single-server private information
retrieval. In 32nd USENIX Security Symposium (USENIX Security
23), Anaheim, CA, August 2023. USENIX Association.

[4] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed:
Single database, computationally-private information retrieval. In
FOCS, 1997.

[5] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A frame-
work for efficient and composable oblivious transfer. In CRYPTO,
2008.

[6] Oded Regev. On lattices, learning with errors, random linear
codes, and cryptography. Journal of the ACM, 2009.


	Outline
	Review: secret-key encryption from LWE
	Linearly homomorphic encryption
	Private information retrieval
	A classic PIR scheme: Square-root PIR
	Fast PIR from LWE

