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* public-key encryption
* Learning with Error assumption

Last time we defined the notion of a CPA-secure symmetric key
encryption and showed how to construct it from any PRF family.

Public-Key Encryption

So far we focused on symmetric encryption, which assumes that both
parties share a secret key k. What if the parties do not have a shared
secret key? In the first lecture Henry showed how they can generate
such a secret key by communicating over a public network.

Definition 1. A public key encryption scheme consists of three PPT
algorithms (Gen, Enc, Dec) where
* Genis a PPT algorithm that takes as input the security pa-
rameter 1! and outputs a key pair (pk, sk).

* Encis a PPT algorithm that takes as input a public key pk
and a message m € M and outputs a ciphertext Enc(pk, m).

* Dec is a polynomial time algorithm that takes as input a
secret key sk and a ciphertext ct and outputs a message m.

The correctness guarantee is that for every A € IN and for every
me M Ar
Pr[Dec(sk, Enc(pk,m)) =m] =1

where the probability is over (pk,sk) < Gen(1*) and over the ran-
domness used by Enc.

Definition 2. A public key encryption scheme (Gen, Enc, Dec) is said
to be secure if for every A € IN and every mg, m; € M, it holds that

(pk, Enc(pk, mg)) = (pk, Enc(pk, m1))

There is a stronger definition of se-
curity, which is the golden standard
for security, known as security against
chosen ciphertext attacks (or CCA-
security). Here the attacker can also
get the decryption of ciphertexts of its
choice.

Recall that during the first lecture
Henry covered Merkle’s key-exchange
scheme, which only offers mild security
guarantees, though he mentioned the
secure Diffie-Hellman key-exchange
which is secure under the Discrete-

Log assumption (which is quantumly
broken).

Sometimes we relax the definition
of perfect completeness and allow a
negligible probability of error over
(pk,sk) < Gen(1*) and over the
randomness used by Enc.



ENCRYPTION SCHEMES 2

where the distributions are over (pk,sk) < Gen(1") and over the
randomness of Enc.

Are we assuming here that the adversary is given only a single
ciphertext? No! Notice that in the public key setting ciphertexts can
be computed efficiently given pk, and pk is given in both distributions

above. As mentioned above one can consider a
stronger definition, called CCA security

. L L (security against adaptive chosen
scheme taught is El-Gamal, which is based on the Diffie-Hellman message attacks) where the adversary is

Typically, in cryptography classes the first public key encryption

key-exchange protocol (and thus on the Discrete Log assumption), given a decryption oracle.
or the RSA encryption scheme which was developed here at MIT by

Rivest, Shamir and Adleman (Ron Rivest will give a guest lecture in

our class later this semester!). The RSA encryption scheme is also

known to be broken given a quantum computer since it relies on an

assumptions stronger than factoring.

We depart from this tradition, and focus on constructions that are
believed to be post-quantum secure. Typically, such constructions
are based on lattices, which is a mathematical construct that is quite
different from the factoring bases or the discrete-log based ones. In
particular, we will focus on the Learning with Errors (LWE) assump-
tion.

Learning with Errors (LWE) Assumption

The LWE assumption was introduced by Regev [1] in a breakthrough
work for which he won the Godel prize. Loosely speaking, the LWE
assumption asserts that it is hard to solve noisy linear equations over
finite fields. We will not define the notion of a finite field, rather we
will focus on the specific class of finite fields which contain all the
elements {0, 1,...,9— 1}, where g is a prime, and where addition

and multiplication is done modulo 4. Such a finite field is often denoted by
We note that if g is not a prime then this would not be a field. One GFd[‘ﬂ' which s short for Galos Field of
orader 4.

of the requirements of a field is that every non-zero element has a
multiplicative inverse, which holds if and only if g is a prime (unless
multiplication is defined in a more complicated way in which case we
can handle power of primes as well).

The LWE assumption is a family of assumptions associated with
paramaters n = n(A), m = m(A), g = q(A) and an error distribution x
over GF[g].

Definition 3. The LWE,; 4,, assumption asserts that
(A,sA+e) = (A U)

where A <& Z5"™ s <~ Zjj, e < X"
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Note that there are some parameters in which the LWE;; 4, as-
sumption is clearly true. For example, if x is the uniform distribution
over GF[g| or if m < n. However, in these regimes the assumption
is not useful. There are also regimes in which this assumption is
clearly false. For example if x is the distribution that always out-
puts 0. In this case there is no error and one can solve s by Gaussian
elimination. Luckily, there are regimes in which the assumption is be-
lieved to be true and is extremely useful. For example: let n(A) = A,
m = poly(A), g = poly(A) or even larger, and x is a small norm
distribution. Often we let x be the discrete Gaussian distribution
where we restrict the outputs to be in [—B, B], where —B = g — B.
This distribution ) has the special property that if there exists a PPT
adversary that breaks LWE;, ;,4,x then one can use this adversary to
break worse-case lattice problems (such as finding approximating
the shortest vector in a lattice). We will not elaborate on this, and for
those who are interested, Vinod Vaikuntanathan has fantastic lecture
notes on this topic here.

For us, all we will use is that x takes values in [—B, B] where B is a
small error parameter (significantly smaller than g).

Symmetric Encryption Scheme from LWE

The encryption scheme is quite straightforward: The message space
is {0,1}. The secret key is s <~ Z}. To encrypt a bit b € {0,1}:

Enc(s,b) = (a,s-a+e+blq/2])
where a < Z!. To decrypt a ciphertext (a,c) € Z*:
Dec(s, (a,c)) : output 0 iff [c —s-a| < g/4.

One nice property about this scheme (which the PRF based con-
struction does not have) is that it is linearly homomorphic. Namely,
for every by, by € {01} it holds that

Dec(s, Enc(s, by) + Enc(s, bp)) = by @ bs.

Note that there is an error growth. Namely, the error in the ciphertext

Enc(s,b1) + Enc(s, by) is e; + e, which is twice as large as the noise

in a fresh ciphertext Enc(s, by @ b). But as long as g is large enough

compared to the error we can do many additive homomorphisms. There is question about this in Pset 2.
Why do we care that the scheme is linearly homomorphic? It turns

out that this is a very useful property. As we will see next week, this

can be used to build a Private Information Retrieval (PIR) scheme.
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Is this scheme CPA-secure?

Recall that that to prove CPA security we need to argue that a PPT
adversary A that is given an encryption oracle, cannot distinguish
between Enc(s,0) and Enc(s,1). Note that the encryption oracle can
be simulated given many samples of the form {a;,s - a; + ¢;}!_;,
where ay,...,a; & Zgandey,..., et < x. The LWE assumption
asserts that even given these samples, (4,5 -a +e¢) ~ (a,u) where
a,u < Zzand e < x. and thus (a,5-a+e+0blq/2]) =~ (a,u), as
desired.

Public-Key Encryption from LWE

e Gen(1"):

1. Letn = A, g = poly(A) and m = 6(n -logq). Let x be
the discrete Gaussian distribution with error bound B such
that B-m << q/4.

2. Generate s <& Zg, A& ng’”, and e + x™.
3. Output pk = (A,sA +e¢) and sk = s.

Denote by B € Z"t1)*" the matrix whose first 1 rows is the
matrix A and the last row is the vector sA + e. Thus, we can
think of pk = B. Note that

(-=s,1)-B=ce.
* Enc(pk,b) chooses a random r <& {0,1}" and outputs
B-r+b(0,...,0,]q/2]).

* Dec(sk,c¢) outputs o iff [(—s,1) - c| < q/4.
Note that

Dec(sk, Enc(pk, b)) = 0 iff |(—s,1) - (B-r+b(0,...,0,[q/2]))| < q/4
Moreover, note that
(=s,1)-(B-r)=((—s,1)-B)-r=e-r<m-B,
where B is a bound on the error. Correctness follows from the fact
that m-B < g/4.
Is this scheme secure?

Security follows from the LWE assumption, but proving this is trick-
ier than in the symmetric key setting. To prove security we argue that
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if pk = B was truly random in Zg"H)X’n then for every b € {0,1}
(pk, Enc(pk, b) = (pk, U), (1)

where U is uniformly distributed in Zf', and where = means that the
two distributions are equivalent. Namely, if B was truly random then
Enc(pk, b) information theoretically loses all information about b and
thus the scheme is information theoretically secure (but decryption
is lost). Then we can rely on the LWE assumption to argue that pk is
computationally indistinguishable from being uniform in Zg'.

To prove Equation (1), we need to prove that

(B,B-r) = (B,U)

for B & Zzmtl)xm (& £ 1} and U & Z}+1. This follows from
the fact that m > nlogq together with the Leftover Hash Lemma (see
wikipedia for an explanation of this lemma). Let me offer an intuitive
explanation: Denoting the i"th row of B by B;, note that each B; - r €
Z, leaks at most log q bits of information about r. Since nloggq << m
even after leaking (B; - 7,...,B;_1 - r) for a given random matrix B,

r still has high min-entropy (it has min-entropy at least m — (i — 1) -
log g. It is known that if » hash high min-entropy ad is independent
of B;, then (B;, B; - r) = (B;, U) where U <* Z,.
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