
Course Introduction
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 2 (February 7, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Logistics

• You should have received a group assignment

Outline

• Reminder: Definition of a PRF

• DES

• Stretch break

• AES

course introduction 2

Quantum vs. post-quantum crypto

One important distinction that I did not mention last lecture is the
distinction between post-quantum cryptography and quantum cryptogra-
phy.

When we are talking about quantum algorithms, there are actually
three settings we can think about: It does not make much sense to think

about a quantum honest party and
classical adversary, because then the
honest party is more powerful than the
adversary.

Honest party Adversary
Classical crypto Classical Classical
Post-quantum crypto (us) Classical Quantum
Quantum crypto (6.S895) Quantum Quantum

In the setting of quantum crypto, we typically think of the honest
party and adversaries communicating over quantum channels.

The new NIST standards are on post-quantum cryptography.
These give algorithms that we can run today on classical computers
that defend against hypothetical quantum computers.

Certain very simple quantum algorithms (e.g., involving single
qubits) we can run today in experimental settings. But more serious
computations, such as quantum zero-knowledge proofs, we are very
very very very very far from being able to run. Implementing such
algorithms seem to require vastly larger quantum circuits than, e.g.,
Shor’s algorithm.

course introduction 3

The bad news

Some of crypto is based on “nice” assumptions. For example, the
Rabin cryptosystem is based on the hardness of factoring. This is a
“win-win” situation: either we have a secure cryptosystem, or we get
a factoring algorithm (which would be exciting).

We could base our block ciphers on “nice” assumptions, such as
the assumption that factoring is hard, but the resulting cryptosystems
would be too slow. For example, factoring- and discrete-log-based Operations with large numbers are

costly primarily because the fastest
multiplication algorithms for numbers
of this size is superlinear in the number
of bits in the number.

The schoolbook multiplication algo-
rithm multiplies n-bit numbers in time
O(n2). For RSA-sized numbers, you
might use the fancier Karatsuba method
in time O(n1.58) but we don’t typically
go beyond that.

systems typically require manipulating 2048- or 256-bit numbers,
which is costly. Instead, we design symmetric-key cryptosystems
based on ad-hoc assumptions. For example, we just assume that AES
is a secure block cipher—there is no clean mathematical assumption
to which we can relate its security.

As so often in life, we want nice things. But nice things cost too
much.

Why study the design of symmetric-key primitives?

• They are arguably the most important primitives in the prac-
tice of crypto.
Used in: phone, computer, satellite, etc.

• The constructions are clever.

• They fit into our theme of post-quantum crypto.

• NOT so that you can write your own implementations or
design your own ciphers.

NIST publishes standards for block ciphers. There are three widely
used ones:

Key size Block size
DES (1975) 56 bits 64 bits
3DES 168 bits 64 bits
AES (1998) 128, 192, or 256 bits 128 bits

Some attacks exploit small block sizes. A 128-bit block size is the
minimum and many would argue that it should be larger. Salsa20

uses a 256-bit key and a 512-bit block size.

Definition of PRF
This discussion of PRFs is copied
almost verbatim from our 6.1600 lecture
notes.

Syntax A pseudorandom function (PRF) is defined over a keyspace
K, and input space X and output space Y . For concreteness, we can
think of X = Y = {0, 1}n.

course introduction 4

Intuitively, we think of a pseudorandom function as “looking like”
a random function in the sense that for secret k ←R K, it is infeasible
to distinguish F(k, ·) from a truly random function f : X → Y . The style of definition here follows the

(free!) Boneh-Shoup textbook. Check
it out for much more detail on these
topics.

Formally, we define PRF security using a game:

Definition 1 (PRF Security Game). The game is parameterized by a
PRF F : K×X → Y , and adversary A, and a bit b ∈ {0, 1}.

• The challenger samples a key k←R K.
• If b = 0, the challenger sets f (·) := F(k, ·).
• If b = 1, the challenger sets f (·)←R Funs[X ,Y]. Here, Funs is the set of all functions

from X to Y .• Then for i = 1, 2, . . . (polynomially many times):

– The adversary A sends the challenger a value xi ∈ X .

– The challenger responds with yi ← f (xi) ∈ Y .

• The adversary outputs a bit b̂.

For b ∈ {0, 1}, let Wb denote the probability that some adversary
A outputs bit “1” in the PRF security game parameterized with bit b.
Then define the PRF advantage of A at attacking F as:

PRFAdv[A, F] ≤ |Pr[W0]− Pr[W1]| .

To turn this into a formal asymptotic definition, we parameterize
the key space (also possibly the input/output spaces) by a security
parameter λ, and we allow the adversary A to run in time poly(λ).

Definition 2 (Pseudorandom function). A function F : K × X → Y
is a pseudorandom function if all p.p.t algorithms A there exists a
negligible function µ(·) such that large enough λ ∈N,

PRFAdv[A, Fλ] ≤ µ(λ).

The adversary that guesses a random bit has advantage 0. This
definition asserts that no efficient adversary can do much better than
that.

PRF vs. PRP A “block cipher” is really a pseudorandom permutation
(PRP), rather than a pseudorandom function. The difference are:

• a PRP has the same input and output space: P : K×X → X ,

• a PRP maps distinct inputs to distinct outputs—there are no
collisions, and

• a PRP also has an efficient inversion algorithm given the key:
P−1(k, ·).

AES and DES are block ciphers (a.k.a. PRPs). We use them in many
cases as PRFs, since if an attacker sees T input/output pairs, it can
only distinguish a PRP from a PRF with advantage roughly T2/ |X |.

course introduction 5

If the output space of the PRP is large (e.g., 256 bits), then it might as
well be a PRP for practical purposes.

Since nowadays, we typically construct things using PRFs rather
than PRPs, I will not describe how the inversion algorithms for either
construction works.

The general strategy

The plan Most of the symmetric-key primitives we use (e.g., block
ciphers, hash functions) we design today using this process:

• Step 1: Assume access to an ideal primitive.
(e.g., public random permutation on n bits)

• Step 2: Use the ideal primitive to build new primitive.

• Step 3: Instantiate the ideal primitive with something that we
hope “behaves enough like” the ideal one.

The only “leap of faith” is in the third step. Without that, we typ-
ically can reduce security of the new primitive to that of the ideal
one. The problem is that we need to eventually implement the ideal
primitive with something, which requires a leap of faith.

Said another way, the PRF security of AES is effectively based on
the assumption “AES is a secure PRF.”

The plan for evaluating the security of new primitives is:

• Try to break the new primitive with all known attacks.

• Run competitions and to get researchers to break each other’s
cryptosystems.

• After a design has withstood a few years of scrutiny, assume
that it’s good enough.

Having said that, the difficulty of cipher design at this point often
isn’t security, but getting good performance on all sorts of different
hardware. Many cryptographers would bet their lives that there will Lattice assumptions are another matter.

I think many people would bet at least
their left hand that the learning-with-
errors problem (which we will see soon)
is hard.

never be a 240-time attack on 256-bit AES. I don’t think you will be
able to find a cryptographer who will bet their life on the hardness of
factoring or elliptic-curve discrete log.

DES
Reference note: This discussion is just
a restatement of the descriptions of DES
and AES in the Boneh-Shoup textbook.
Consult their book for details.

With explosion of potential commercial applications of cryptography,
the predecessor to NIST published the “Data Encryption Standard”
(DES) in 1975. The government never approved it for use in classified
applications, as the 56-bit key length was too short even on the day
the standard was published. Diffie and Hellman at the time pointed

out that 56-bit keys were unacceptably
short. Their analysis was based on
projections about cheap computation
would get and how quickly. They
(presciently) proposed that using 128-
bit keys would be prudent.

course introduction 6

As far as I know, the best known attack on DES today is Matsui’s
linear cryptanalysis (1993), which recovers the key from 247 input-
output pairs in a known-plaintext attack.

To describe the design of DES using the plan we outlined in the
previous section, we have to answer two questions:

• What ideal primitive will we use?

• How do we use it to build a PRP?

Step 1: The ideal primitive

The ideal primitive that the DES design uses is a set of 16 random
functions f1, f2, . . . , f16 : {0, 1}n → {0, 1}n.

Step 2: Use ideal primitive to build PRF – Feistel network

DES then uses a very slick design proposed by Horst Feistel (MIT
grad, at IBM at the time) now called the “Feistel network” (Fig. 1) to
build a PRP out of a PRF.

The Feistel network builds a PRP out of a random function by ap-
plying a simple transformation many times (over many “rounds”).
The Feistel permutation is π : {0, 1}2n → {0, 1}2n and, when instanti-
ated with a function f : {0, 1}n → {0, 1}n is defined as:

π f (x, y) := (y, x⊕ f (y)).

The initial and final bit shuffling in DES
have no apparent effect on cipher’s
security. Boneh-Shoup speculates that
the initial and final permutations were
to slow down DES implementations
in software relative to hardware. This
is consistent with the widespread
(and somewhat confirmed) view that
DES was designed to be breakable
by governments but good enough for
commercial use.

The neat property of the Feistel network is that it is invertible:
it turned a random function into an (efficiently invertible) random
permutation.

Step 3: Instantiate the ideal primitive – final DES construction

DES uses a 56-bit keyspace (|K| = 256) and a 64-bit block size (2n =

64).
The DES cipher on input x ∈ {0, 1}2n just looks like:

DES(x) := (P1 ◦ π f16 ◦ · · · ◦ π f2 ◦ π f1 ◦ P0)(x),

where the fis are the idealized random functions and P0 and P1 are
just fixed permutations of the input bits.

Luby and Rackoff showed that if we take n off to infinity and
model the fis as random functions, even a three-round variant of DES
is indistinguishable from a random permutation. Of course, their
result says little about DES in practice, since (1) the fis are not at all
random and (2) we are dealing with very small input/output sizes
and asymptotic results are not meaningful in this parameter regime.

course introduction 7

Figure 1: Feistel network

course introduction 8

The round functions The last step is to instantiate the round functions
(the fis) with concrete functions.

To do so, DES first generates 16 “round keys” k1, . . . , k16 ∈ {0, 1}48,
each derived from a subset of the bits of the 56-bit DES key k.

The round function F(ki, ·):
• computes the initial state as a linear function of the round

key and its input,

• splits the state into six-bit chunks and applies a different non-
linear function (called an S-box for “substitution”) to each
using a lookup table, and

• permutes the bits of the state.

The only non-linear part of the cipher is the S-boxes. It turns out that
if you pick the S-boxes at random, the cipher becomes very weak.
The DES S-boxes are constructed to have a bunch of nice statistical
properties that prevent attacks. (For example, no output bit is not
close to a linear function of the input bits.)

Instantiating the ideal DES construction with these 16 keyed round
functions gives the final construction.

Lessons?

• Many rounds of a simple operation.

• Avoiding all of the known attacks takes a lot of care. Choos-
ing parameters at random does not work.

AES

The AES block cipher uses a very different overall structure than
DES, but the round function shares some similarities. AES is an Unlike DES, the government uses AES

to protect classified data. They use 128+
bits for SECRET data, and 192+ bits for
TOP SECRET data.

Foreign governments who do not
trust AES and design their own ciphers
apparently often use weak homebrewed
ciphers.

“iterated Even-Mansour cipher.” (AES with one round gives a ci-
pher called the Even-Mansour cipher.) AES operates on a key of size
{128, 192, 256}. The block size is a fixed 128 bits.

Step 1: The ideal primitive

AES uses an invertible permutation π : {0, 1}n → {0, 1}n, which we
can model as a truly random permutation.

Step 2: Use ideal primitive to build PRF

For this discussion, let the block size be n. AES first derives a number
of “round keys” k0, . . . , kr ∈ {0, 1}n from the input key k. Each round
key is a linear function of the input key k.

course introduction 9

After that, the AES cipher on input x ∈ {0, 1}n just alternates
between XORing a round key into the state and applying the permu-
tation π:

• st← x⊕ k0

• For i = 1, . . . , r:

– st← π(x)⊕ ki.1 1 The one detail we omit is that true
AES uses a slightly different per-
mutation π in the last round. This
apparently enables some performance
optimizations in hardware.

• Output st.

It is possible to show in an asymptotic sense, as the block and key
sizes go off to infinity, this idealized AES construction behaves like a
PRF. The Even-Mansour paper is a great read if you are interested in
this.

Step 3: Instantiate ideal primitive – final AES design

Now to get to the full AES construction, we just need to instantiate
the public permutation π : {0, 1}n → {0, 1}n. It modifies the input in
three steps:

• SubBytes. Use a lookup table S : {0, 1}8 → {0, 1}8 hardcoded
into the design to replace each of the 16 input bytes with a
different one:

b1‖b2‖ · · · ‖b16 7−→ S(b1)‖S(b2)‖ · · · ‖S(b16).

This is a non-linear operation. As in DES, the designers chose
the S-box carefully to avoid various attacks.

• ShiftRows. View the 16-byte block as a 4× 4 matrix. Perform
a cyclic shift on this matrix: shift the 0th row 0 cells to the
right, the first row 1 cell to the right, the second row 2 cells to
the right, and the third row 3 cells to the right.

• MixColumns. View the 16-byte block as a 4× 4 matrix. Multi-
ply it by a fixed matrix. The matrix multiplication in the

MixColumns step is in GF(28). If you
don’t know what that means, it doesn’t
matter.Cache attacks

Not only do you have to be careful in the design of ciphers like AES.
You also have to be careful in the implementation. Software implemen-
tations of AES are particularly tricky.

The issue is in implementing the S-boxes, or other table lookups,
in software. Cache-timing attacks are one serious pitfall. To explain:
because of caching, if the AES routine makes consecutive lookups
to S[1] then S[1], these will complete faster than if it looks up S[1]
then S[187]. The difference in timing—even though it is small—leaks

course introduction 10

information about the internal state of the cipher. This can be enough
to perform devastating attacks.

When using 128-bit keys, the number of rounds is r = 10.

Linear cryptanalysis
Note: Again, these notes are mostly
a rephrasing of the content in Boneh-
Shoup. Look there for the details.

The cryptanalysis of block ciphers is an art on its own. I will try to
sketch the idea behind one sort of attack (based on the description
of Matsui’s attack as summarized in the Boneh-Shoup book), which
may give you the flavor of how these attacks work.

Let F be a PRF in which inputs, outputs, and keys are all n-bit Typically this cryptanalysis is per-
formed against block ciphers. Since
we’re talking about PRFs today, I will
stick with PRFs.

strings. Further, let say that you find that there is some bias in the
relationship between the key bits, input bits, and output bits.

A linear relation on the cipher E exists if there are sets of bit posi-
tions Bx, By, Bk ⊆ [n] such that

Pr

[
x[Bx]⊕ y[By] = k[Bk] :

x ←R {0, 1}n

y← F(k, x)

]
≥ 1

2
+ ε,

where ε is noticeable.
In a truly random function, F(k, x) is independent of x, so the bias

ε = 0. In a concrete PRF, the bias can be non-zero.
The idea of the attack is to gather a very large number of input-

output pairs: (x1, y1), . . . , (xT , yT).
Then if we look at all of the input/output XORs, the linear relation

tells us that the resulting values will be slightly biased towards the
value of the Bkth bit of the key:

(x1[Bx]⊕ y1[By]), . . . , (xT [Bx]⊕ yT [By]).

The idea is then to take the majority of these T values and use that
value as our guess at the XOR of a subset of the key bits k[Bk].

The Chernoff bound tells us that our guess will be right with prob-
ability at least 1− exp(Tε2/2). So if we have a linear relation with
bias ε, we get a bit of information about the key with probability well
over 1/2 after seeing something like T = 4/ε2 input/output pairs.

In the case of DES, one linear relation depends on 12 bits of the
secret key. If you have additional linear relations, you can use these
to recover the full key. See Boneh-Shoup 4.3.1 for details.

References

	Outline
	Quantum vs. post-quantum crypto
	The bad news
	Why study the design of symmetric-key primitives?
	Definition of PRF
	The general strategy
	DES
	AES
	Linear cryptanalysis

