
Course Introduction
Notes by Henry Corrigan-Gibbs

MIT - 6.5610
Lecture 1 (February 5, 2024)

Warning: This document is a rough draft, so it may contain
bugs. Please feel free to email me with corrections.

Logistics

• Course website with video links

• Piazza and Gradescope

• Pset 1 out tomorrow (due 2/16)

Outline

• History of cryptography

– If time: Merkle puzzles

• Course logistics

• Stretch break.

• Post-quantum cryptography

– Crypto impact of hypothetical quantum computers

– Grover search

course introduction 2

A few remarks before we get started

This is a graduate course in applied cryptography. The goal of an
introductory course, such as 6.1600, is to teach you how to use crypto-
graphic tools. The goal of this course, in contrast, is to teach you how
to build cryptographic tools.

The excellent thing about this type of course is that it is not a pre-
requisite for anything so we can teach whatever we want—whichever
ideas are most beautiful, most powerful, and most fun to study. The
sort of things we will look at are:

• how the most basic cryptographic primitives (e.g., AES)
work,

• how to fetch record from a database without revealing what
you fetched,

• how to do computation on encrypted data,

• how to verify a computation that someone else did without
re-running the entire computation, and

• how to break cryptosystems: to factor big integers, and so on.

At the end of class, we will have two guest lectures with Ron Rivest
and Jim Bidzos (the first CEO of the company that commercialized
RSA).

New this year: Since this is a graduate course, we will assume some
familiarity with basic cryptographic tools. At the same time, we The lecture notes for 6.1600 summarize

much of the background material that
you will need.

will try to make the course as self-contained as possible. If you can
complete the first problem set, you will be in good shape for the rest
of this course.

Note well: This lecture will be much less technical than all those
following. But I hope you find it useful and entertaining.

Some history
WARNING: This history is grossly
simplified.The first chunk of this class will be dedicated to “post-quantum”

cryptosystems—those that we believe can withstand attacks by a
large-scale quantum computer. NIST is developing a new set of post-
quantum-secure cryptosystems that all of our devices will soon be
using to communicate with each other. The first draft specifications One bonus of these new post-quantum

cryptosystems is that they have all sorts
of useful properties that factoring- and
discrete-log-based cryptosystems do
not have. We will discuss those over the
next few weeks.

were just published in August 2023, so this is all very new and excit-
ing.

Since this is an applied cryptography course we wanted to begin
with a brief history of how cryptography has been used over time.
The history also puts these new post-quantum systems into context. See Ron Rivest’s excellent list of refer-

ences, linked from the course website,
for a number of books on the history of
cryptography.

Most of the historical material in this
section from David Kahn’s Codebreakers.

https://github.com/mit-pdos/6.1600-notes/releases/latest/download/lecture-notes.pdf

course introduction 3

In my comically simplified view of the world, I divide the history
of cryptography into two eras: before 1976 and after 1976.

Before 1976

David Kahn’s Codebreakers traces the history of cryptography back
roughly 4,000 years, to an Egyptian scribe who substituted a few
hieroglyphics for some others in a text. The idea of hiding secret
messages appears more explicitly in the Iliad but the first cryptosys- (Story of Bellerophon.)

tem that we would recognize as one today was used by the Spartan
military around 475 BCE.

The Spartan device was called a Skytale (pronounced like “ski-
tall-ee”). To encode a message, the encryptor would take a strip of
leather and wrap it around a stick of a certain fixed (secret!) diam-
eter. Then, the encryptor would write the message down the length
of the strip. After unrolling the leather strip, the resulting message
looked like gibberish. The decryptor would decrypt by re-wrapping
the leather using a stick of the same diameter. The scheme requires Since the key space is extremely small—

how many different stick sizes can there
be? This is not a very secure cipher.
Cryptosystems for thousands of years
relied for security on the system itself
also being secret. To decrypt, you need
to know that you are looking for sticks:
if you try to wrap the leather strip
around a frog, for example, you will not
be able to decrypt the message.

the encryptor and decryptor to agree on a secret key—the diameter of
the stick—in advance.

Cryptosystems got more and more sophisticated over the next
1,500 or so years, but the principle remained largely the same: the
sender and recipient share a secret key and they run some algorithm
to garble the message. Governments were, by and large, the most
enthusiastic users of cryptosystems for most of this time. Kahn’s
book has scores of fascinating details on these cryptosystems and
how they break over time.

1883: Kerckhoffs’ principle

While the most dramatic conceptual developments in cryptography
happened in the 20th century, there was one in 1883 worth noting. In
that year, Kerckhoffs published a text on military cryptography that
popularized the notion that the only secret in a cryptosystem should be
the key. A designer should always assume that the attacker knows the
methods of encryption and decryption.

In modern cryptography, we take this as a given, though most
cryptosystems in history tended to implicitly assume that the adver-
sary had some uncertainty about how the cryptosystem worked.

There are two reasons why this principle is a bedrock of cryptog-
raphy:

1. Key rotation: If your algorithm must remain secret, then if an at-
tacker learns the algorithm, you have to design an entirely new
algorithm to use. Switching to use a new secret key is much easier

course introduction 4

than changing an algorithm.

2. Algorithm compromise: A secret key can be smaller than and algo-
rithm and is thus easier to hide. For example, the people building
the cipher machines in your factory (or coding the algorithms)
have to know the algorithm to do their work. But they don’t need
to know the secret keys.

1900-1970: Computers enter the picture One of challenges of cryp-
tosystem design (even today!) is that for a scheme to be useful, it
must not only be secure, it must also be fast. In the pre-computer era,
when a human was doing the encipherment, this put some severe
limits on how complicated the algorithms could be.

As calculating devices got more and more sophisticated, cryp-
tosystems could get more and more sophisticated: from pen-and-
paper to mechanical devices to electromechanical devices (e.g.,
Enigma), and finally to digital machines. People still design bad
cryptosystems on fast computers, but the computing power we have
now means that the space of feasible algorithms is much larger now
than it was then.

The central role of computation in cryptography meant that early Information theorists, such as Shannon,
were involved as well. After Merkle,
Diffie, and Hellman, made explicit the
connection between cryptography and
complexity theory, the influence of
information theory on cryptography
has waned.

computer scientists (Turing, for example) were instrumental in break-
ing cryptosystems.

1970-1975: Commercial cryptography

The development of ATM machines in the banking industry drove
the development of unclassified cryptosystems for commercial
use. The Data Encryption Standard (DES) was the first major such You can still find triple-DES in use in

the financial data systems.scheme, and it became standard in the banking industry.
(Story of development of DES.)
AES is the successor to DES, and we will get into its design in

detail on Wednesday.
This, along with Kahn’s Codebreakers, published in 1967, caused

many researchers outside of government to start to think about cryp-
tographic problems.

How cryptosystems break

One thing that we can learn from this history is how cryptosystems
fail in practice. The most common failure modes are:

• Failure of key distribution: An attacker is able to recover the
secret keys, either because of key misuse, reuse, theft, etc.

• Cryptanalysis: Just by observing encrypted message traffic—
sometimes encryptions of chosen messages, even—the at-

course introduction 5

tacker can recover parts of the message.

• Endpoint compromise: An attacker is able to recover plaintext
data before it is even encrypted. Paying off the right person
can be a cheap way to get the information you need. For an example of pre-computer end-

point compromise: Apparently some
typewriters in the U.S. Embassy in
Soviet Russia were “upgraded” to
transmit key-presses via radio to a
listening device. The details are here.

• Traffic analysis: Just observing the volume and timing of en-
crypted message traffic is enough to reveal secret informa-
tion.

Modern cryptography has made serious progress on the first two
of these attack vectors. Unfortunately, we have probably made nega-
tive progress on the latter two. :(

Developments of 1976 and after

As you may have learned in a prior cryptography course, Merkle
proposed the idea of public key exchange in an undergraduate
project in 1974. To refresh your memory: the idea is that Alice and
Bob, communicating over a shared (but public) channel can agree
on a shared secret key that an attacker watching the public channel
cannot learn. In a world with billions of web clients and web servers,
that all want to communicate with each other securely, key exchange
is almost essential.

Diffie and Hellman (1976) then gave the first key-exchange pro-
tocol in which the honest parties run in polynomial time and an
attacker—who is trying to recover the secret by observing the com-
munication channel—runs in super-polynomial time.

Diffie and Hellman’s paper launched academic cryptography as a
field.

Merkle Puzzles

You may have seen Diffie and Hellman’s simple and clever key-
exchange protocol. You probably have not seen Merkle’s, which is
even simpler and which is too slick to not present. Merkle’s scheme
is NOT secure enough to be useful in practice—there is a polynomial-
time attack on the scheme. At the same time, the key exchange it
gives is non-trivial (the best attack is more costly than the honest
parties’ computation) and it’s just a good construction to know.

The brilliance of Merkle is that he not only came up with the first
key-exchange protocol, he also came up with the concept of key ex- I should note that slightly earlier in the

1970s, Cocks, Ellis, and Williamson in
Britain’s GCHQ came up with many
(though not all) of the same ideas that
Merkle, Diffie, Hellman, Rivest, Shamir,
and Adleman did. However, had the
academics not published their work,
it is not clear that we ever would have
heard about these ideas for many many
years. GCHQ only declassified the work
of their researchers in the mid-1990s.

change, and of public-key cryptography more generally.

The goal. Before giving the protocol, we have to define the correct-
ness and security goals. Yael will go in depth into cryptographic

https://spectrum.ieee.org/the-crazy-story-of-how-soviet-russia-bugged-an-american-embassys-typewriters

course introduction 6

formalism next Monday. Today, I will be less formal.
A key-exchange protocol over a shared-secret space S consists of

two algorithms:

• Gen()→ (pk, sk). Output a public key and a secret key.

• Finish(sk, pk) → S . Take a secret key and a public key as
input and generate a shared secret.

ALICE BOB

------------------------- ------------------------

(pk_A, sk_A) <- Gen()

========== pk_A ==========>

(pk_B, sk_B) <- Gen()

<========== pk_B ==========

s <- Finish(sk_A, pk_B) s <- Finish(sk_B, pk_A)

[Alice and Bob use s as shared secret key.]

We want two things:

Correctness means that an honest Alice and honest Bob should agree
on the same shared secret with good probability:

Pr

[
Finish(skA, pkB) = Finish(skB, pkA) :

(pkA, skA)←R Gen(1λ)

(pkB, skB)←R Gen(1λ)

]
≥ “large.”

Security against time-T eavesdroppers means that an eavesdropper
that runs in time T should not easily be able to recover the shared
secret. That is, for all adversaries A running in time at most T: Normally we want the even stronger

security property that the shared secret
is indistinguishable from random, but
this is good enough for now.Pr

[
A(pkA, pkB) = Finish(skA, pkB) :

(pkA, skA)←R Gen(1λ)

(pkB, skB)←R Gen(1λ)

]
≤ “small.”

Merkle’s protocol. In Merkle’s scheme, the shared secrets live in the
set S = {1, . . . , n2}. In his scheme, Alice and Bob share a public
hash function H : {1, . . . , n2} → Y , where the space Y is just some
exponentially large set of bitstrings. The important thing is that H
has no collisions—distinct inputs give distinct outputs.

Then the scheme goes as follows:

1. Gen()→ (pk, sk).

• Sample n numbers at random x1, . . . , xn ←R {1, . . . , n2}.

course introduction 7

• Set sk← (x1, . . . , xn).

• Set pk← (H(x1), . . . , H(xn)).

2. Finish(sk, pk)→ S .

• Parse (x1, . . . , xn)← sk.

• Parse (y1, . . . , yn)← pk.

• Find all pairs (i, j) such that H(xi) = yj. Find a canonical
pair (e.g., the one with the smallest value yj) and output xi

as the shared secret.

When put into play this looks like:

1. Alice chooses a1, . . . , an ←R {1, . . . , n2}
and sends H(a1), . . . , H(an) to Bob.

2. Bob chooses b1, . . . , bn ←R {1, . . . , n2}
and sends H(b1), . . . , H(bn) to Alice.

3. Alice and Bob both look for a “collision:”
an (i, j) such that H(ai) = H(bj).

4. Alice uses ai ∈ {1, . . . , n2} as her secret key.

5. Bob uses bj as his secret key.

Correctness. Follows from the Birthday Paradox. If you choose
two sets of n numbers at random from {1, . . . , n2}, you will get a
collision with constant probability.

Security. Is the really clever part. Alice and Bob run in time n. But
the attacker’s task is more difficult: the attacker is given:

H(a1), . . . , H(an) H(b1), . . . , H(bn).

In time n, the attacker can find the value v∗ = H(ai) = H(bj) whose
preimage is the shared secret. But recovering this secret will take—
at least if we model the hash function as a random function—time
Ω(n2).

We will not prove this here, but the basic idea is that in o(n2)

guesses, the attacker is very unlikely to ever guess the preimage of
v∗. In that case, the preimage of v∗ could take on many possible
equally likely values and the adversary has little chance of guessing
it.

The foundation of public key cryptography In the years since the Diffie-
Hellman paper, we have figured out how to build key-exchange pro-
tocols, public-key encryption, and digital signatures from a variety of
cryptographic assumptions. But there are two assumptions are by far
the most popular in practice:

course introduction 8

• The discrete-log problem – either in Z∗p or certain elliptic-
curve groups

• The hardness of factoring integers (and derivate assumptions,
such as RSA)

That’s it. There are two. In fact, RSA is on the way to being depre-
cated, so there is really only one.

That is to say, the security of our entire digital infrastructure—the
privacy of your web traffic and your Gmail messages, the integrity of
software updates for your car, the security of nuclear power plant’s
control systems (I’m guessing), etc.—all rely on the hardness of basi-
cally one computational problem. This is a conspicuous single point
of failure for our tech ecosystem.

And what if these problems turn out to be easy??? [Cue suspensful Okay, I know that you probably know
the end of this story. But humor me and
pretend you don’t.

music.]

Course logistics

And now for something completely different. . .

• Course staff:

– Yael Kalai, me (profs)

– TAs/LAs: Katarina Cheng, Leo Wang, and Katherine
Zhao

• Course website: https://65610.csail.mit.edu/

– Piazza link is there

– Gradescope code is on Piazza

– Video links are there

– We will try to post notes there before lecture

• Course policies: On the website, please take the time to read
them. I will summarize the important points but please read
the details.

• We have an exciting new policy on ChatGPT! (Preview: You
can use it but you MUST quote/cite.)

• Communication: Please do by Piazza for almost everything.

– Public notes for questions, please. (You can be
anonymous!)

– Exception: Sensitive personal situation that you want
to share with me or Yael and do not want

– Exception: Anonymous course feedback. We love it!
Please send it this link, which is also on the website.

https://65610.csail.mit.edu/
https://mit.co1.qualtrics.com/jfe/form/SV_dmtuhhWTA4qTNTU

course introduction 9

• Recitations: We will have them unless noted on the course
calendar

• Assignments

– 40% – Four problem sets (due on Fridays).

* Since this is an applied crypto class, we will
have some programming on almost every
problem set.

* The first three you must do in teams as-
signed by the course staff.

* Will email assignments shortly.

* We use Ron Rivest’s very student-friendly
system to weight the problem sets. See the
course website.

– 20% – One quiz on April 17.

– 40% – The final project! Your chance to get a taste of
security/cryptography research.

* Done in teams of 3-4 students. (Teams may
change; see details.)

* The details are listed on the course website.

* Many small check-in assignments to make
sure that you are making good progress.

* The report must explain who did what.

• Late policy: On the course policies page.

• Very important: Please use S3! They are amazing and can
help you whenever you get stuck. It’s scary to ask for help.
But

Student mental health is also an excellent resource.

You can always always come to me and/or Yael!

Effect of large-scale quantum computers

Before I get into this discussion, I should warn you: this is not a
course on quantum cryptography and I am not an expert on quan-
tum computing (though Yael is!). If you want to learn about quantum
cryptography, you are in luck! You can take 6.S895 this semester
T/Th 11am to go way into depth on quantum computing. Two of the
world’s experts will be teaching that class, so it should be good.

We left off musing on what a disaster it would be if someone
cooked up a discrete-log algorithm...

course introduction 10

Quantum computing in three minutes (SKIP)

Physicists and computer scientists had been thinking about using The Stanford Encyclopedia of Philos-
ophy article has more details on the
history and pointers to the relevant
papers.

quantum mechanics for computation in the 1970s and 1980s.
At the crudest level, you can think of a quantum computer as a

tweaked Boolean circuit. If you feed random inputs to a circuit, you
will induce some probability distribution on the wires and output.
We can describe the probability of a particular wire carrying a zero
or a one as real number. For example, feeding random inputs to an
AND gate gives you a 1 with probability 1/4 and a zero otherwise.
In a quantum circuit, the wires instead carry complex numbers. The
fact that you can add two non-zero complex numbers and get a zero
(not true for probabilities) is the source of a quantum circuit’s appar-
ent power. The computational model is extremely simple and clean.
At the same time, no one yet has been able to actually implement a
large quantum circuit

The surprise

The gigantic surprise in early 1990s was the discovery by Shor (1994)
that polynomial-size quantum circuits can factor integers and com-
pute discrete logs—in Z∗p, elliptic curve groups, and actually any
group we would ever use for cryptography.

More precisely, if you could implement a quantum circuit with
some big-but-not-necessarily-infeasible number of gates (this paper
estimates roughly 240 gates) you could factor the 2048-bit integers There has been some exciting recent

work on reducing the number of gates,
but I don’t think anyone has worked
out the constants involved in these
newer factoring algorithms yet.

that we use in the RSA cryptosystem.
The consequence of Shor’s algorithm is that a large-scale quantum

computer could theoretically break both of the popular assumptions
underlying essentially all public-key cryptography in use today.
In particular, a quantum computer will render our beloved Diffie-
Hellman key-exchange protocol unusable.

On top of that, in 1996, Grover showed that quantum circuits can
theoretically break block ciphers much faster than we would expect.

Important take-away messages

As an applied cryptographer, the two critical pieces of knowledge are
that large-scale quantum computers give: One of the tragedies of quantum

computing (from where I sit) is that
even a gigantic quantum computer does
not seem to help us solve everyday
computational problems (those in NP,
for example) much faster. My physicist
friends tell me that they are potentially
great at simulating quantum systems
and in 6.S895 you can learn about
other surprising things that they could
potentially do.

• polynomial-size circuits for factoring integers and comput-
ing discrete logs via Shor, so our standard key-exchange pro-
tocols, public-key encryption systems, and digital-signature
schemes are completely broken, and

• better exponential-size circuits for breaking block ciphers
and hash functions via Grover. The consequence is that we

https://plato.stanford.edu/entries/qt-quantcomp/
https://plato.stanford.edu/entries/qt-quantcomp/
https://eprint.iacr.org/2023/092.pdf
https://arxiv.org/abs/2308.06572
https://arxiv.org/abs/2308.06572

course introduction 11

need to double our key sizes (or output size, for hash func-
tions*) to achieve the same level of security.

This explains why the post-quantum parts of this course will focus
on public-key algorithms. Our symmetric-key cryptosystems are still
basically fine to use, provided we bump up the key size.

Should we care? Whether or not you believe that anyone will build
a quantum computer in the next 100 years, the world will soon start
using a new generation of post-quantum-secure crypto primitives. So Governments want to switch to new

post-quantum cryptosystems now
so that attackers in 30 years with a
quantum computer can’t decrypt
today’s traffic.

understanding these new tools is important no matter what.

A small example: Grover search

Describing Shor’s algorithm requires a little background; the API of
Grover’s algorithm is straightforward.

• Given: A function f : {0, 1}n → {0, 1}.

• Find: A value x ∈ {0, 1}n such that f (x) = 1, if one exists.

With a classical computer, solving this type of “black-box” search
problem is very hard. It will take every classical algorithm Ω(2n)

invocations of f to find a solution with constant probability.
In contrast, Grover gives a quantum circuit that has size poly(n) | f | ·

2n/2, where | f | denotes the size of the representation of f as a Boolean
circuit. So if f is an efficient function, Grover search can solve the
problem with a quantum circuit of size roughly poly(n) · 2n/2.

To compare: If n = 128, a classical computer takes an infeasible
2128 invocations of f ; the quantum circuit uses a very plausible 264

invocations of f . (The Bitcoin network is computing 268 hashes per
second.)

The power of Grover’s search is that it’s completely agnostic to the
function f . It works for all efficient functions.

An application: Inverting a hash function. Say that you have a block
cipher E : {0, 1}n → {0, 1}n → {0, 1}n. The following task captures a
very standard goal in cryptanalysis:

• Given: Two encrypted messages

c1 ← E(k, “hello′′) c2 ← E(k, “world′′),

for k←R {0, 1}n.

• Find: The encryption key k.

We can apply Grover search to solve this problem:

f (x) :=

1 if c1 = E(x, “hello′′) and c2 = E(x, “world′′)

0 otherwise.

course introduction 12

So this cryptanalytic problem, which would have taken roughly
2n time on a classical computer could theoretically take roughly 2n/2

time on a quantum computer. The upshot is that to protect against
quantum attacks, you need to use 256-bit symmetric encryption
keys.

Where next?

Tomorrow we will dive into the design of the AES block cipher (it’s
post-quantum secure!) and next week we will start in on lattice-based
cryptography, the most promising replacement for factoring- and
discrete-log-based public-key cryptosystems. As we will see, lattice-
based cryptosystems have a number of other magical properties as
well.

References

	Outline
	A few remarks before we get started
	Some history
	Developments of 1976 and after
	Merkle Puzzles
	Course logistics
	Effect of large-scale quantum computers
	Where next?

