
Massachusetts Institute of Technology
6.5610: Applied Cryptography April 2, 2024
Henry Corrigan-Gibbs and Yael Tauman Kalai Due: March 15, 2024 at 4:59pm

Problem Set 4

Problem sets are due at 4:59pm on the due date.

Please submit your problem set, in PDF format, on Gradescope. Each problem should be in a separate page.
You are to work on this problem set in groups of your choice. Each group member must independently

write up and submit their own solutions.
You must typeset your homework in LATEXand submit it electronically! Each problem answer must be

provided as a separate page. Mark the top of each page with your group member names, the course number
(6.5610), the problem set number and question, and the date. We have provided a template for LATEX on
the course website (see the Psets tab at the top of the page).

Problem 4-1. SIS-based commitment

Recall that in class we defined the notion of a commitment scheme (see Lecture 10), and we showed a
construction based on the LWE. That scheme is a bit commitment scheme where we commit to a single bit.

In this problem we consider a commitment scheme where we commit to long m-bit strings, and where
the commitment is shrinking (in the sense the the commitment string is shorter than m). The scheme is
associated with the following algorithms (Gen,Com):

Gen generates a random matrix A←R Z2m×n
q where m > 5n log q.

Com(A, x, r) = (x, r)TA where r ←R {0, 1}m is randomness used by the algorithm and x ∈ {0, 1}m is the
string we wish to commit to.

(a) Is this scheme statistically or computationally binding or neither. Explain your answer in a few
sentences.

(b) Is this scheme statistically or computationally hiding or neither. Explain your answer in a few
sentences.

(c) How do the properties of this scheme (binding and hiding) differ from those of the commitment scheme
described in class (in Lecture 10).

Problem 4-2. Recovery in Shamir’s secret-sharing scheme

In lecture, we saw Shamir’s t-of-n secret-sharing scheme over the finite field F = Fp, where p > n is a prime.

To secret-share a message µ ∈ F, the dealer chooses a random polynomial M(x) of degree ≤ t − 1 with
coefficients in F, such that M(0) = µ. To party i, for i ∈ {1, . . . , n}, the dealer gives the secret share
(i,M(i)) ∈ F2.

We saw in class that any t shares are enough to recover the secret message µ via polynomial interpretation.

In this problem, we consider the more interesting case, in which some parties give valid shares (i,M(i)) and
other parties give invalid shares (i, r), where r ∈ F is some arbitrary value not equal to M(i).

(a) Say that t = n/4. You are given n shares. Of the shares, n− 10 are valid shares, and 10 are invalid
shares. (Assume that n, t≫ 10.)

Give a polynomial-time algorithm for recovering the secret that has zero probability of error. Argue
why your algorithm is correct and analyze its runtime.

(b) Explain how your algorithm behaves when you are given n shares and n/4 of them are invalid. (As in
part (a)), assume that t = n/4.) Is your algorithm still correct? Does it still run in polynomial time?

(c) Explain how your algorithm behaves when you are given n shares and 7n/8 of them are invalid. (As
in part (a)), assume that t = n/4.) Is your algorithm still correct? Does it still run in polynomial
time?



6.5610 : Handout 1: Problem Set 4 2

(d) Say that you are given n shares (r1, . . . , rn) with d = n/4 of them being invalid.

Let E(x) be a polynomial of degree at most d such that if ri is an invalid share, then E(i) = 0.
Explain why, for all i ∈ {1, . . . , n}, it holds that

E(i) · (M(i)− ri) = 0 ∈ F. (1)

Given such a polynomial E, explain how to recover the secret in polynomial time with zero correctness
error. The general recovery algorithm for the Shamir secret-sharing scheme works by finding E and
then recovering as you do in this problem. The cleverness comes in finding E efficiently.

(e) [Extra credit] Explain how to find the polynomial E in polynomial time. (Hint: View each equation
of the form Eq. (1) as a linear relation on some set of variables.)

Problem 4-3. Sumcheck protocol

Following the notation in the lecture note, in the sumcheck protocol, the prover wants to prove that∑
h1,h2,...,hm∈H

f(h1, h2, . . . , hm) = β

for a function f : Fm → F. There will be m rounds of communication. In i-th round, the prover sends a
polynomial gi(x), while the verifier performs the checks and sends a uniformly random ti back.

(a) Describe how a malicious prover can convince the verifier that∑
h1,h2,...,hm∈H

f(h1, h2, . . . , hm) = β′

for some β ̸= β′, if all tis are known beforehand. In other words, the protocol has only two steps:
the verifier sends all tis, and the malicious prover sends back all gis.

(b) Implement the prover in the sumcheck protocol by filling out prover template.sage. You can find
a quick reference here. Make sure that

• You submit a sage file on gradescope (with .sage file extension).

• The code does not use any outside library such as numpy. You can double-check it by running
on sagecell.

• No hacking the auto-grader.

verifier.sage is the actual code running on the auto-grader, so you can use it to debug.

https://hackmd.io/@Utaha1228/rk0EB406a
https://sagecell.sagemath.org/

