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Problem Set 3

Problem sets are due at 4:59pm on the due date.

Please submit your problem set, in PDF format, on Gradescope. Each problem should be in a separate page.
You are to work on this problem set in groups. For problem sets 1, 2, and 3, we will randomly assign the

groups for the problem set. After problem set 3, you are to work on the following problem sets with groups
of your choosing of size three or four. If you need help finding a group, try posting on Piazza. See the course
website for our policy on collaboration. Each group member must independently write up and submit their
own solutions.

You must typeset your homework in LATEXand submit it electronically! Each problem answer must be
provided as a separate page. Mark the top of each page with your group member names, the course number
(6.5610), the problem set number and question, and the date. We have provided a template for LATEX on
the course website (see the Psets tab at the top of the page).

Problem 3-1. [Extra Credit] Seminar attendance

We have another speaker coming to the security seminar this week. We will give extra credit on this
problem set if you attend.

Title: Designing protocols that actually get deployed

Speaker: Eric Rescorla

Abstract: Designing good Internet protocols is hard. Designing protocols that actually get deployed is
harder. We take a look at some protocols that have been widely deployed (e.g., TLS 1.3, QUIC, and the
WebPKI), and some others which have been less so (e.g., IPsec, SCTP, and DNSSEC/DANE) and draw
some lessons about the factors that lead to protocol success and failure.

Bio: Eric Rescorla has contributed extensively to many of the core security protocols used in the Internet,
including TLS, DTLS, WebRTC, ACME, and QUIC. He was editor of the TLS 1.3 protocol, which secures
the vast majority of Web traffic and co-founder of Let’s Encrypt, a free and automated certificate authority
that is now the largest on the Internet. He is the former Chief Technology Officer for Firefox and Internet
Platform at Mozilla, where he was responsible for setting the overall technical strategy for the Firefox browser
and Mozilla’s participation in Internet standards and global policy.

Details are:

•Time: Noon on Thursday, March 7

•Place: 32-D463 (Star)

•Also important: There will be free food. We will order more than last week so that we won’t run out.

If you have a timing conflict at this time, we cannot give make-up extra credit but there will be many future
extra-credit opportunities!

There are other seminar talks as well and many are related to the content that we will cover in this class!
See https://securityseminar.csail.mit.edu/ for details.

Problem 3-2. Random Private Information Retrieval

Consider a weaker variant of the private information retrieval problem called random private informational
retrieval (RPIR), where instead of the client querying a specific database index of their choosing, they want
to receive a random index of the database. It turns out that we can convert an RPIR scheme into a PIR
scheme with higher communication costs and extra rounds of back-and-forth at the start.

https://securityseminar.csail.mit.edu/
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For a client and server, and a database D = (D1, . . . , DN ) ∈ {0, 1}N , define RPIR(1λ,D), on security
parameter λ, to be a scheme which results in the client downloading and storing (j,Dj) where j is a random
index j ←R [N ]. Security and succinctness apply as defined in lecture. Intuitively, the server will not learn j.

We now describe how to construct a PIR scheme from RPIR. Let PIR = (Setup,Query,Answer,Reconstruct)
consist of the following algorithms:

•Setup(1λ,D)

–Run RPIR(1λ,D) to produce (j,Dj) stored by client.

•Query(1λ, i)→ (qu, st)

–Client outputs qu← i⊕ j and client state st← (i, j,Dj)

•Answer(D, qu)→ ans

–Server partitions the set [N ] = {1, . . . , N} into N/2 pairs {k, k ⊕ qu} = {k, k ⊕ (i⊕ j)}
–For each pair {k, k ⊕ qu}, server computes p{k,k⊕qu} = Dk ⊕Dk⊕qu.

–Server outputs ans←
{
p{k,k⊕qu}

}
enumerating over k such that we have one parity in ans per pair.

•Reconstruct(ans, st)→ b ∈ {0, 1}
–???

(a) Fill in Reconstruct(ans, st). That is, describe how the client will use its stored state and the index pair
parities in ans to recover b = Di. Assume the server can output the p’s in order so that the client
knows that parity p{k,k⊕qu} corresponds to index k (assume the client and server can both produce
the partition in the same order).

Solution: Find p{k,k⊕qu} such that k = j or k = i. Then (assuming we get k = j, but the
same result holds for k = i),

Di = Dj ⊕ p{j,j⊕qu}

= Dj ⊕ p{j,i} as j ⊕ qu = j ⊕ (i⊕ j) = i

= Dj ⊕ (Dj ⊕Di) = Di

See this cool paper from Gentry et al. for more details! https://eprint.iacr.org/2020/1248.pdf

(b) Argue in 1-2 sentences that PIR = (Setup,Query,Answer,Reconstruct) satisfies security.

Solution: The output of Query(1n, i) = i ⊕ j looks random, since j is a random index
unknown to the server (by the security of RPIR). Therefore, the pairs of indices that the
server computes are indistinguishable from random pairs of indices.

(c) Argue in 1-2 sentences that (Query,Answer) result in total communication < N .

Solution: The output of Query(1λ, i) is 2 log(N) bits, since i and j are indices. The output
of Answer(D, qu) is N/2 (bit, index). So the total bit length is 2 log(N) + N/2 < N for
sufficiently large N .

Problem 3-3. Learning parities with noise

The learning-parity-with-noise assumption is similar to the LWE assumption with two differences. First,
LPN is over GF[2]; i.e., addition and multiplication is done modulo 2. Second, the noise is a Bernouli random
variable with probability ϵ; i.e., each linear relation is corrupted with probability ϵ. Specifically, the LPNn,m,ϵ

assumption asserts that
(A,As+ e) ≈ (A,u)

where A ←R {0, 1}m×n, s ←R {0, 1}n and e = (e1, . . . , em) ∈ {0, 1}m where each ei is a boolean random
variable that is “1” with probability ϵ and “0” with probability 1− ϵ.

https://eprint.iacr.org/2020/1248.pdf
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(a) Is the LPNn,m,ϵ assumption true for ϵ = 0? Is it true for ϵ = 1/2? Is it true for ϵ = 1?

Solution: No, yes, and no.
In cases ϵ = 0 and ϵ = 1 an adversary can find the secret s via Gaussian elimination since e
is deterministic and known to the adversary.
In case ϵ = 1/2, the vector As+ e is uniform random and independent of s.

(b) Assuming that the LPNn,m,ϵ assumption holds, is it true that

(A,As+ e, (s1, . . . , sn)) ≈ (A,u, (s1, . . . , sn))

where A ←R {0, 1}m×2n, s = (s1, . . . , s2n) ←R {0, 1}2n, u ←R {0, 1}m, and e = (e1, . . . , em) ∈ {0, 1}m
where each ei is a boolean random variable that is 1 with probability ϵ?

Solution: Yes. Denote by A1 ∈ {0, 1}m×n the first n columns of A and denote by A2 ∈
{0, 1}m×n the last n columns of A. Similarly, denote by s1 ∈ {0, 1}n the first n coordinates
of s and denote by s2 ∈ {0, 1}n the last n coordinates of s. Then As + e = A1s1 + A2s2 +
e. The adversary knows A1s1 so it can subtract it, and then this becomes an LPNn,m,ϵ

instance. Formally, if an adversary can distinguish between (A,As + e, (s1, . . . , sn)) and
(A,U, (s1, . . . , sn)) then it can break the LPNn,m,ϵ assumption, as follows: Given a tuple
(A2, y2) where A2 ←R {0, 1}m×n and y2 is either truly random in {0, 1}m or is of the form
A2s2 + e for s2 ←R {0, 1}n and e a Bernouli noise vector, choose at random A1 ←R {0, 1}m×n

and s1 ←R {0, 1}n, let A ∈ {0, 1}2n×m be the matrix whose first n columns are A1 and last
n columns are A2 and let y = A1s1 + y2. Run the distinguisher on (A, y, (s1, . . . , sn)). Note
that if y2 was random then y is random (independent of A and s), and if y2 = s2A2 + e then
y = sA+ e.

(c) (Extra credit) Assuming that the LPNn,m,ϵ assumption holds, is it true that

(A,As+ e, s1 ⊕ . . .⊕ sn+1) ≈ (A,u, s1 ⊕ . . .⊕ sn+1)

where A←R {0, 1}m×(n+1), s = (s1, . . . , sn+1)←R {0, 1}n+1, u←R {0, 1}m, and e ∈ {0, 1}m where each
ei is a boolean random variable that is 1 with probability ϵ?

Solution: Yes. Let b = s1⊕ . . .⊕sn+1, so we can write sn+1 = s1⊕ . . .⊕sn⊕b. Then, we can
define a matrix B ∈ {0, 1}m×n where Bi,j = Ai,j +Ai,n+1. Because A is a random matrix,
B is also random. Let s′ be the first n elements of s, and let A′ be the first n columns
of A. Then, As + e = A′s′ + (s1 ⊕ . . . ⊕ sn ⊕ b)A·,n+1 + e = Bs′ + bA·,n+1 + e. Since
the adversary knows b and A·,n+1 they can subtract bA·,n+1, and then we just get an LPN
instance (B,Bs′ + e).

Problem 3-4. Fully Homomorphic Encryption

In what follows we change the encryption algorithm of the fully homomorphic encryption scheme presented
in class. We do not change its key generation algorithm or its decryption and homomorphic evaluations, so
assume that we use the same parameters (m,n, q, χ) and the same secret key s = (−s′, 1).
Evaluate the following schemes on correctness, security, homomorphic addition, and homomorphic multipli-
cation. State whether each scheme satisfies each property with a brief proof/explanation.

(a) We change the encryption algorithm to be the following:

Enc(s ∈ Zn
q , b ∈ {0, 1}):

• Sample a random matrix A←R Z(n+1)×n
q .

• Construct matrix B = [A||As′], where s = (−s′, 1).
• Output B+ b · In+1, where In+1 is the identity matrix in Zq of dimension n+ 1.

Solution:
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• Correctness is satisfied: Enc(s, b) · s = (B + bI)(−s′, 1) = [A||As′](−s′, 1) + b(−s′, 1) =
b(−s′, 1).

• Security is not satisfied: we don’t have the error term, so we can just solve with Gaussian
elimination to get the secret key.

• We have homomorphic addition because (C1+C2)s = C1s+C2s = b1s+ b2s = (b1+ b2)s

• We have homomorphic multiplication because C1C2s = C1(b2s) = (C1s)b2 = b1b2s

(b) We change the encryption algorithm to be the following: Enc(s ∈ Zn
q , b ∈ {0, 1}):

• Sample a random matrix A←R Z(n+1)×n
q .

• Sample random vector e←R χn+1.

• Construct matrix B = [A||As′ + e], where s = (−s′, 1) and In+1 is the identity matrix in Zq of
dimension n+ 1.

• Output B+ b · In+1.

Solution:

• Correctness is satisfied: Enc(s, b) ·s = (B+bI)(−s′, 1) = [A||As′+e](−s′, 1)+b(−s′, 1) =
b(−s′, 1) + e.

• Security is satisfied by LWE because B looks like a random matrix, so B would act as a
one time pad for bI.

• We have homomorphic addition because (C1 +C2)s = C1s+C2s = b1s+ e1 + b2s+ e2 =
(b1 + b2)s+ (e1 + e2)

• We do not homomorphic multiplication because C1C2s = C1(b2s) = C1(b2s + e2) =
(C1s)b2 +C1e2 = (b1s+ e1)b2 +C1e2 = b1b2s+(e1b2 +C1e2). We know e1b2 is small but
C1e2 is large, making it so that our error term becomes too large for decryption.

Problem 3-5. Linearization attack on LWE with low noise

In this problem, you are going to implement the linearization attack on LWE. Consider the following mini
example of a LWE public key (we omit the modulus for simplicity):

A =

(
2 3
1 −4

)
,u = A · s+ e =

(
5
−3

)

Define s =

(
x
y

)
and e =

(
e0
e1

)
, we can rewrite it as a linear system:{

2x+ 3y = 5− e0

x− 4y = −3− e1

Assuming the error is either 0 or 1, the first equation can be phrased as “2x+3y is either 4 or 5”, so we can
guarantee that the following equation is always true:

(2x+ 3y − 4)(2x+ 3y − 5) = 0

which is equivalent to

4x2 + 12xy + 9y2 − 18x− 27y + 20 = 0

If we perform the above step on each equation in the linear system, we will get m (number of rows in A)
polynomials that evaluate to 0. It is still difficult to solve systems of multivariate polynomial equations, but
“linearization” comes to the rescue. The idea is simple: when we have the equation
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4x2 + 12xy + 9y2 − 18x− 27y + 20 = 0

treat it as a linear equation with 5 variables:

4z1 + 12z2 + 9z3 − 18z4 − 27z5 + 20 = 0

With a sufficient number of equations, we can solve the system using Gaussian elimination. In our mini
example, we will have 2 equations and 5 variables, which is not enough, but if A is a matrix with dimension
5 × 2, we can recover the secret key with only the public key, assuming that the equations are linearly
independent. You may assume that the equations after linearization are linearly independent for the following
questions.

(a) If the dimension of A is m × n and the error is chosen in the range [−B,B] (so there are 2B + 1
possible error values), what’s the minimum m so that the above attack works? In other words, how
many variables are there after linearization?

Solution: m ≥
(
2B+n+1

n

)
− 1.

(b) In the file output.txt, you can find the information of a LWE public key. Your task is to recover the
secret s. Submit the value of s in the pdf file and the code on Gradescope.

You can find an introduction on SageMath here.

Solution: s = [58154, 31596, 332, 56837, 4766, 46239, 62131, 34689].

https://hackmd.io/@Utaha1228/BkhtQ1i3p

